
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Kimmo Ahokas

Load balancing in LTE core network
with OpenStack clouds:

Design and implementation

Master’s Thesis
Espoo, Nov 9, 2015

Supervisor: Professor Antti Ylä-Jääski
Advisor: Docent Sakari Luukkainen

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Kimmo Ahokas

Title:
Load balancing in LTE core network with OpenStack clouds: Design and imple-
mentation

Date: Nov 9, 2015 Pages: 63

Major: Data Communication Software Code: T-110

Supervisor: Professor Antti Ylä-Jääski

Advisor: Docent Sakari Luukkainen

Cloud computing, software defined networking (SDN) and network functions vir-
tualisation (NFV) are gaining popularity among the whole IT industry. The
scalability, seemingly infinite amount of resources and flexible payment options
make these technologies attractive for wide variety of use cases. As a new trend
the industry is exploring the possibility of combining private and public clouds
as a single hybrid cloud.

The network industry has been slow in adopting these new technologies, partly
because the aging proprietary technologies are difficult to implement with cur-
rent cloud technologies. However, new 4G networks are built using protocols
commonly used in internet thus making it finally possible to implement the core
network using virtualisation and cloud technologies.

This thesis explores the possibility of implementing LTE core network compo-
nents as applications running on virtual machines provided by OpenStack cloud.
Furthermore, we build a hybrid cloud consisting of two OpenStack instances and
implement simple load balancer that automatically creates virtual machines to
the most suitable cloud when requested by application.

We show that OpenStack as a cloud platform is suitable for building hybrid
clouds. With powerful hardware and fast network it can be used for running
LTE core network components. Furthermore, we show that the LTE network
components could be implemented using hybrid clouds and that the technology
could benefit network operators. The possible benefits include lower cost for
running the network, increased resiliency and even increased performance for end
users if the system is built correctly.

Our findings also show that more optimized implementations for network entities
are needed for building large-scale LTE networks using hybrid cloud. Also the
algorithm for placing virtual machines needs refinements.

Keywords: OpenStack, NFV, cloud, load balancing, LTE, vEPC

Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan koulutusohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Kimmo Ahokas

Työn nimi:
Kuormantasaus LTE-ydinverkossa OpenStack-pilvien avulla: Suunnittelu ja to-
teutus

Päiväys: 9. Marraskuuta2015 Sivumäärä: 63

Pääaine: Tietoliikenneohjelmistot Koodi: T-110

Valvoja: Professori Antti Ylä-Jääski

Ohjaaja: Dosentti Sakari Luukkainen

Pilvilaskenta, ohjemlistomääritteinen tietoliikenne (SDN) ja verkkokomponent-
tien virtualisointi (NFV) kasvattavat jatkuvasti suosiotaan IT-alalla. Skaalautu-
vuus, näennäisesti rajattomat resurssit, joustavat hinnoittelumallit sekä alempien
kerrosten abstraktointi tekevät näistä teknologioista houkettelevia useissa erilai-
sissa käyttötarkoituksissa. Uutena trendinä alalla nähdään julkisten ja yksityisten
pilvijärjestelmien integrointi niinsanotuksi hybridipilveksi.

Verkkoalalla uusien teknologioiden käyttöönotto on ollut verrattaen hidasta, osit-
tain siksi että vanhojen verkkoteknologioiden yhteensovittaminen pilvipalvelui-
den kanssa on haastavaa. Mutta koska uudet 4G-verkot on toteutettu interne-
tissä yleisesti käytetyn IP-protokollan avulla, voidaan ydinverkko vihdoin toteut-
taa käyttämällä erilaisia pilvipalveluita.

Tässä diplomityössä tutkitaan LTE-ydinverkon osien toteutusta ohjelmistokom-
ponentteina, jotka suoritetaan OpenStack-pilvialustan tarjoamilla virtuaaliko-
neilla sekä -verkoilla. Tätä tarkoitusta varten rakennamme kahdesta erillisestä
OpenStack-pilvestä koostuvan hybridipilven. Lisäksi toteutamme yksinkertaisen
kuormantasauskomponentin, joka luo automaattisesti virtuaalikoneita tarpeen
mukaan vähemmän kuormitettuun pilveen.

Osoitamme, että OpenStack-alusta soveltuu hybridipilvien toteuttamiseen ja
riittävän tehokkaalla laitteistolla varustettuna myös LTE-ydinverkon komponent-
tien ajamiseen. Tuloksemme osoittavat myös, että LTE-ydinverkon toteuttaminen
on mahdollista hybridipilvien avulla ja että tälläisestä järjestelystä on mahdolli-
sesti hyötyä verkko-operaattoreille. Mahdollisiin hyötyihin lukeutuvat tehokkuu-
den ja virheidensietokyvyn parantuminen sekä kustannusten lasku.

Tuloksistamme myös nähdään, että paljon lisää tutkimus- ja kehitystyötä vaa-
ditaan, ennen kuin nämä teknologiat ovat valmiita kaupalliseen käyttöön. LTE-
komponentit vaativat huomattavan määrän optimointia toimiakseen tarpeeksi te-
hokkaasti ja lisäksi kuormantasauksen algoritmeja on hiottava.

Asiasanat: OpenStack, NFV, pilvipalvelu, kuormantasaus, LTE, vEPC

Kieli: Englanti

3

Acknowledgements

I would like to thank my instructor Sakari Luukkainen and supervisor Antti
Ylä-Jääski for making this thesis possible. Big thanks to my co-workers, es-
pecially Antti Tolonen and Gopika Premsankar for the tremendous amount
of help I got from both of them. Also the great people from Aalto Electri-
cal engineering department, Jose Costa-Requena, Jesus Llorente Santos and
Vicent Ferrer Guasch deserve my gratitude for their help. Finally I would
like to express my gratitude for my girlfriend, family and friends for their
support with this thesis.

Espoo, Nov 9, 2015

Kimmo Ahokas

This work has been performed in the framework of CELTIC-Plus project
C2012/2-5 SIGMONA. The author would like to acknowledge the contribu-
tions of their colleagues, although the views expressed are those of the author
and do not necessarily represent the project. This information reflects the
consortium’s view, but the consortium is not liable for any use that may be
made of any of the information contained therein.

4

Abbreviations and Acronyms

3G 3rd Generation
3GPP 3rd Generation Partnership Project
4G 4th Generation
APN Access Point Name
AWS Amazon Web Services
CCFM Cross-Cloud Federation Manager
COTs Commercial of-the-self
CSS Cascading Style Sheet
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
E-UTRAN Evolved Universal Terrestrial Radio Access Network
eNB Evolved Node B
EPC Evolved Packet Core
ETSI European Telecommunications Standards Institute
GRE Generic Routing Encapsulation
GTP GPRS Tunnelling Protocol
HSS Home Subscriber Server
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IaaS Infrastructure as a Service
ICMP Internet Control Message Protocol
IMSI International Mobile Subscriber Identity
IP Internet Protocol
IPsec Internet Protocol Security
JSON JavaScript Object Notation
KVM Kernel-based Virtual Machine
LTE Long Term Evolution
MME Mobility Management Entity
MMU Memory Management Unit
NAT Network Address Translation

5

NFS Network File System
NFV Network Functions Virtualisation
NTP Network Time Protocol
OS Operating system
OVS Open vSwitch
PaaS Platform as a Service
PDN-GW Packet Data Network Gateway
QoS Quality of Service
REST Representational State Transfer
RTT Round Trip Time
S-GW Serving Gateway
S3 Simple Storage Service
SaaS Software as a Service
SDN Software Defined Networking
SIM Subscriber Identity Module
SMSC Short Message Service Center
SSH Secure Shell
UE User Equipment
vEPC Virtualised Evolved Packet Core
VLAN Virtual Local Arean Network
VM Virtual Machine
VPN Virtual Private Network
WSGI Web Server Gateway Interface
XML Extensible Markup Language

6

Contents

Abbreviations and Acronyms 5

1 Introduction 9
1.1 Motivation . 9
1.2 Research Goals . 11
1.3 Structure of the Thesis . 12

2 Background 13
2.1 Cloud Computing and Virtualisation 13
2.2 Load Balancing Among Multiple Clouds 14
2.3 OpenStack . 15

2.3.1 OpenStack Nova Compute Service 15
2.3.2 OpenStack Neutron Networking Service 16
2.3.3 OpenStack Glance Image Service 21

2.4 Software Defined Networking and Network Functions Virtual-
isation . 21

2.5 Long Term Evolution (LTE) 23
2.5.1 Distributed MME . 25

2.6 Web Technologies . 26
2.7 Related Work . 28

2.7.1 Cloud federation and load balancing 28
2.7.2 Virtualization performance 29
2.7.3 Virtual Evolved Packet Core 29

3 System Design 30
3.1 High-level Architecture . 30
3.2 Internal Architecture . 32

4 Testbed Architecture 35
4.1 Physical Architecture . 35
4.2 Software Architecture . 37

7

4.3 Network Architecture . 39

5 Evaluation 41
5.1 OpenStack Testbed Network Performance 41

5.1.1 Network Latency . 42
5.1.2 Network Throughput 43

5.2 MME Load Balancing . 44
5.3 MME Performance on Multiple Clouds 46

6 Discussion 49
6.1 Testbed Performance . 49
6.2 Multi-cloud Load Balancing 50
6.3 Distributed MME on Multiple Clouds 51
6.4 Future Work . 52

7 Conclusions 54

A Commands for configuring SIGMONA project in OpenStack 60

8

Chapter 1

Introduction

1.1 Motivation

Cloud computing has gained a lot of traction during last few years among
IT industry. The virtually infinite resources and near real-time scalability
offered by various cloud services are very attractive aspects in many use
cases. Furthermore, the pricing models are often compelling and getting
started with cloud platforms is easier than building and maintaining own
infrastructure. Multiple cloud operators offer virtual machines (VM) with
pay-as-you-go pricing model where customers pay only on the usage with-
out any upfront costs. Combining this pricing model with scalable software
components could offer substantial cost savings to service operators.

For larger companies maintaining their own physical infrastructure is still
beneficial, as the price of computation in large environments can be lower
than in cloud services. Furthermore, on-premise infrastructure can offer bet-
ter performance than cloud service especially if the applications require high-
speed connections between servers and end-users. To fully utilize their infras-
tructure some of these companies employ cloud-like management systems for
their infrastructure. This enables teams or individual employees to reserve
computation capacity from this private cloud on-demand without interven-
tion from system administrators. However, with this approach companies
lose the illusion of infinite resources and the cost savings related to public
cloud.

To get the benefits of both private and public clouds companies are mov-
ing to so-called hybrid cloud [37], where companies own part of the infras-
tructure and offload part of the computation to public cloud. This way
companies can fully utilize their private cloud and still have infinite amount
of resources from public cloud.

9

CHAPTER 1. INTRODUCTION 10

To build hybrid cloud setups operators need tools to manage their re-
sources across multiple isolated environments. Resources should be located
to optimal location to gain cost savings and to offer best possible performance
to end users. Thus the physical location as well as network connections and
computation prices should be considered when deploying virtual machines.
All these decisions should happen automatically in fraction of second when
service load increases. Moreover, the tools should be integrated to appli-
cations and services so that the scaling decisions can be affected by most
relevant factors determined by application developers.

Seamless integration of the public and private clouds is a must for hybrid
clouds. Ideally resources are reserved through single interface and system
automatically reserves resources from private or public cloud. The location
of resources should not matter to the actual application, instead all resources
across the whole hybrid cloud should offer similar performance. Furthermore,
the reserving and releasing of resources should be possible via Application
Programming Interface (API) so that it can be integrated easily to applica-
tions. This way applications can trigger the scaling operations automatically
based on actual load, without administrator intervention.

The transition to cloud computing has led to a significant change in soft-
ware architecture as well. To fully utilize the benefits of cloud computing
software must be designed to be horizontally scalable [18]. Practically this
means that running multiple copies of the same program should improve the
performance for end-users. In best case application performance is linearly
scalable, which means that doubling the number of running copies of the
application doubles the performance.

Load balancing among multiple clouds could offer significant benefits for
the whole IT industry from small business to global service providers. Seam-
less integration of resources from multiple vendors and locations can improve
application performance and resilience while reducing costs. However, the
benefits come with trade-offs so companies leveraging multiple clouds must
choose which benefits to emphasize in their deployments.

At the same time new network technologies such as Software Defined
Networking (SDN) and Network Functions Virtualisation (NFV) are gaining
popularity among IT industry. These technologies enable network operators
to abstract the logical network independently of the physical network. SDN
and NFV aim for better error tolerance and higher utilization in networks
thus enabling new opportunities for cost saving. Moreover, these technologies
allow abstracting multiple physical networks as a single virtual network.

Traditional phone networks, including current 3G networks, are based on
circuit-switched systems and built using highly customized, dedicated hard-
ware and software solutions [35]. The high complexity in networks prevents

CHAPTER 1. INTRODUCTION 11

network operators from modifying their networks in accordance to changing
capacity demand. Instead they must plan and install network equipment
based on predicted future peak load so that the network can handle fu-
ture load before new equipment is installed. As these dedicated devices are
expensive it is not economical for operators to have unused network capac-
ity. Instead scalable solutions that can react to changes in network load are
needed.

New 4G networks such as Long Term Evolution (LTE) are based on com-
mon Internet Protocol (IP) and packet switching which makes it possible to
use common hardware and simpler software to build the network. Especially
the LTE core network, Evolved Packet Core (EPC), is a good candidate for
virtualisation. EPC contains multiple different components that are respon-
sible for authenticating users, managing mobility, billing and data routing. In
Virtualised Evolved Packet Core (vEPC) [20] the different network entities
are implemented as software applications running inside virtual machines.
This makes it possible to scale the core network capacity simply by adding
or removing virtual machines. Using cloud technologies in EPC could possi-
bly improve network performance and resilience and even decrease the cost
of running the network.

At the moment OpenStack seems to emerge as one of the most popular
cloud resource management platforms among telecommunication industry. It
is open-source software that allows users to customize it to their needs thus
making it good choice for novel applications. Furthermore, the platform is
designed to be highly scalable and fault tolerant. For these reasons Open-
Stack is selected as the cloud platform to be studied in this thesis. However,
the same principles should be applicable to any other cloud platform offering
similar services as well.

1.2 Research Goals

This thesis studies the possibility of implementing vEPC using hybrid cloud
setup. We begin by implementing a testbed consisting of two independent
OpenStack clouds. Then, we build simple load balancer that can share the
application load among the two clouds. Finally we evaluate the performance
of our system in vEPC use case. Specifically we deploy an EPC entity called
Mobility Management Entity (MME) on the platform and assess it’s perfor-
mance.

The detailed research goals are as follows:

1. Deploy two OpenStack installations as a hybrid cloud platform.

CHAPTER 1. INTRODUCTION 12

2. Implement prototype load balancing system for multiple OpenStack
clouds.

3. Analyze the networking performance of the deployed platform.

4. Analyze the performance of distributed MME on the deployed platform.

5. Assess the viability of the developed solution in real use cases.

To validate our results we compare them to prior research. Especially the
measurements done by Guasch [19] and Tolonen [39] are used for comparison.

The main contributions of this thesis is two-fold. First matter is the via-
bility of hybrid OpenStack cloud and the performance of such setup. Second
is the viability of hybrid clouds for vEPC use case.

1.3 Structure of the Thesis

This thesis is divided in seven chapters. Chapter 1 introduced the topic of this
thesis and our research goals. Chapter 2 explains the related technologies and
most interesting research on related topics. Chapter 3 details the built load
balancer and it’s implementation. Chapter 4 presents our testbed, detailing
both physical architecture and software configuration. Chapter 5 explains
our test methods and the results of measurements. Chapter 6 analyses the
results obtained in previous chapter and discuses the reasons and implications
of the results. Finally in Chapter 7 we present our conclusions and briefly
suggest some topics for further research.

Chapter 2

Background

This chapter discusses the most relevant technologies used in our system
and the related research on the topic. First we introduce the topic of cloud
computing. Second, we discuss the benefits of leveraging multiple clouds
simultaneously. Third section addresses the OpenStack platform and it’s
internal architecture in detail. The fourth section briefly introduces Soft-
ware Defined Networking and Network Functions virtualisation. The fifth
section discusses LTE networks and EPC. The sixth section explains the web
technologies used for our load balancer implementation. Finally the seventh
section gives overview of the most interesting related research.

2.1 Cloud Computing and Virtualisation

Cloud computing has become widely used paradigm in the cloud industry in
a surprisingly short time scale. Armbrust et all. describes cloud computing
as a ”long-held dream of computing as a utility” [5]. According to them
cloud computing has three significant advantages compared to traditional
computing models:

• Appearance of infinite computing resources available on demand.

• Elimination of up-front hardware costs.

• Pay-as-you-go pricing allowing reserving resources only when needed.

In essence cloud computing allows companies to acquire computing re-
sources on-demand and only pay based on actual usage. Thus companies do
not need to reserve resources for peak usage. Although on-demand resources
are usually more expensive than reserved resources, the cloud model can

13

CHAPTER 2. BACKGROUND 14

lower total expenses because resources can be reserved and released based on
momentary service load in matter of minutes.

To realize the full potential of cloud computing high-performance vir-
tualisation solutions are needed. Virtualisation enables cloud operators to
run multiple independent operating systems on a single physical machine at
the same time. Thus the operating systems share the available physical re-
sources. In ideal situation every operating system functions as if it was the
only operating system on the machine, virtual machines should not have any
access to each other and the performance would be equal to running on bare
metal.

However, cloud computing requires that applications are designed to be
vertically scalable. This means that application servers should be nearly
stateless and adding new application servers should increase the applications
performance or user capacity nearly linearly. This allows adjusting the sys-
tem performance based on load just by adding or removing virtual machines
to the system.

2.2 Load Balancing Among Multiple Clouds

Inter cloud load balancing means buying computation or network resources
from multiple cloud platforms and distributing application load among the
different clouds. This approach can offer multiple benefits including better
performance, improved resilience and reduced cost. However, the benefits
come with a trade-off of increased complexity and management overhead.

Traditionally companies must deploy servers to handle the peak load of
their software. Usually this means that the servers are highly utilized during
the day but during nights there are unused resources. Even single cloud helps
improve the situation, as companies can buy only the resources they need.
But multi-cloud setup can offer more benefits.

The pricing models in cloud services can be complicated, thus it is possible
to achieve cost savings by intelligently deciding from where to buy resources.
For example network data transfer price is often dependent on the physical
location of the client. Transferring data to a client in USA from data center
located in Europe can cost a lot and decrease the user experience as latencies
are high. Thus locating servers close to users can offer multiple benefits.
Multi-cloud load balancing allows companies to dynamically relocate their
application servers to as close to clients as possible.

If the used resources are located to different clouds, failures in single
cloud will not affect the whole service and all users. Furthermore, in case
of a failure in single cloud service the needed resources can be temporarily

CHAPTER 2. BACKGROUND 15

moved to other cloud services. Thus multi-cloud load balancing can be used
to improve application resilience.

Distributing the network application to multiple clouds requires that the
application nodes can communicate with each other. One option is to trans-
fer traffic through public internet, but it is not often desired, especially if the
application traffic is not encrypted. More secure way of connecting the net-
works in different clouds is using Virtual Private Network (VPN), which is a
secure tunnel between clients over insecure internet [38]. For example Ama-
zon Web Services (AWS) public cloud supports Internet Protocol Security
(IPsec) protocol suite for connecting to private networks securely [22].

2.3 OpenStack

OpenStack is an ”open source software for creating private and public clouds”1.
It was selected as a target platform for this thesis because it seems to be one of
the most popular open-source cloud platforms. According to extensive anal-
ysis of open-source IaaS platform communities, OpenStack has the largest
amount of active contributors and participants in discussions [21]. Due to
it’s fully open-source code and support for new standards OpenStack is seen
as the most promising solution for implementing a cloud platform [36].

The OpenStack architecture is documented extensively in the project doc-
umentation2. Although the newest version of OpenStack is Kilo (released on
April 2015), on this thesis we concentrate on the previous version, OpenStack
Icehouse. OpenStack is a modular platform that consists of multiple parts
that together form the complete IaaS platform. The main parts of Open-
Stack are Nova Compute service, Neutron Networking service and Glance
Image service. In addition there are shared services, such as Keystone Iden-
tity service and Horizon Dashboard which provides web-based user interface
for end users.

2.3.1 OpenStack Nova Compute Service

The OpenStack Nova Compute service manages virtual machines in an Open-
Stack cloud. It is responsible for scheduling VMs in a single cloud, connecting
the instances to selected virtual network provided by Neutron networking,
connecting the instances to virtual machine images from Glance and con-
necting to additional storage services.

1http://http://www.openstack.org/
2http://docs.openstack.org/

http://http://www.openstack.org/
http://docs.openstack.org/

CHAPTER 2. BACKGROUND 16

Nova consists of multiple services running on multiple hosts on the Open-
Stack cluster. The main components of Nova are API server, scheduler,
messaging queue and virtualisation drivers [27]. As the name implies, API
server implements the front-end API that end-users and other OpenStack
components use to communicate with the computing service. Scheduler is
responsible for allocating physical resources for virtual machines by selecting
suitable compute node. Messaging queue is used for internal communication
between different components of the compute service. Virtualisation drivers
are used for communicating with the actual virtualisation hypervisor.

Nova supports multiple virtualisation hypervisors via different virtualisa-
tion drivers. The default hypervisor used by OpenStack Nova is qemu3/KVM4

with libvirt5. Other supported hypervisors include but are not limited to Mi-
crosoft Hyper-V6, VMware7, XenServer8 and Xen9 with libvirt.

As mentioned, the default configuration of nova uses libvirt, qemu and
KVM to run the actual virtual machines. Libvirt provides a stable API and
programming language bindings for multiple hypervisors that are used by
the nova driver. Qemu is a generic machine emulator that can run software
made for one machine on another machine, for example ARM code on x86
platform. With KVM (Kernel-based Virtual Machine) it can be used as a
high-performance virtualisation software for x86 architecture. KVM itself
is a Linux kernel module that enables hardware-accelerated virtualisation
on platforms using Intel and AMD processors. The main benefits of KVM
are virtualised memory management unit (MMU), I/O virtualisation, Linux
integration and support for live migration [23]. The qemu/KVM hypervisor
achieves near native performance, as most of the CPU instructions in quest
operating system and software are run directly on the physical CPU. Only
small subset of x86 commands must be intercepted, translated by qemu and
then executed on the CPU.

2.3.2 OpenStack Neutron Networking Service

The OpenStack network architecture greatly influences the performance of
our testbed. Thus, it is essential to understand how OpenStack connects
the virtual machines to each other. OpenStack supports multiple different

3http://www.qemu.org
4http://www.linux-kvm.org/
5http://libvirt.org/
6https://technet.microsoft.com/fi-FI/library/hh831531.aspx
7http://www.vmware.com/
8http://xenserver.org/
9http://www.xenproject.org/

http://www.qemu.org
http://www.linux-kvm.org/
http://libvirt.org/
https://technet.microsoft.com/fi-FI/library/hh831531.aspx
http://www.vmware.com/
http://xenserver.org/
http://www.xenproject.org/

CHAPTER 2. BACKGROUND 17

network configurations, including Open vSwitch (OVS) and Linux bridge net-
works. Our system is configure to use Open vSwitch as network back-end, so
in this section we give overview of this architecture in OpenStack. The Open
vSwitch networking is described in great detail in OpenStack networking
guide [29].

Figure 2.1: The general OpenStack network architecture with Open vSwitch
configuration. [29]

Figure 2.1 introduces the high-level netowrk architecture in OpenStack.
As can be seen, compute nodes run firewall and switch services that pro-
vide connectivity to virtual machines. The each virtual switch connects to
switches in other compute nodes and network node. The switch in network
node is connected also to virtual router which then connects to internet. The
figure shows two tenant networks, one using Generic Routing Encapsulation
(GRE) tunnels and one using Virtual Local Area Network (VLAN). Each
virtual network in OpenStack has either own VLAN tag or GRE tunnel tag.
Essentially both VLAN and GRE allow creating multiple virtual networks
which share the same physical network. It is not necessary to configure both
of these networks, but the image illustrates that it is possible to use both
techniques simultaneously.

Figure 2.2 details the networking components running inside the network
node. There are Open vSwitch bridges for each physical network interface,
in this example br-tun for GRE-tunneled tenant networks, br-vlan for VLAN

CHAPTER 2. BACKGROUND 18

Figure 2.2: Overview of network components running inside network node in
Open vSwitch configuration. [29]

tunneled tenant networks and br-ex for external network (internet). Integra-
tion bridge br-int is used for connecting tenant-specific network components
to specific tenant network. For each tenant network there is dedicated Dy-
namic Host Configuration Protocol (DHCP) server running on the network
node. For all virtual routers the network node has four virtual ports in total
and a metadata agent. The routing is implemented using iptables filtering.

In addition to network bridges the OpenStack network node uses Linux
network namespaces10 extensively to separate tenant networks from each
other. Network namespaces provide applications with their own copy of
Linux network stack. Each network namespace has it’s own routing rules,
firewall rules and network devices. Each DHCP server has their own network
namespace as does each virtual router. Thus networks belonging to different
tenants can’t access resources from other tenants.

10http://man7.org/linux/man-pages/man8/ip-netns.8.html

http://man7.org/linux/man-pages/man8/ip-netns.8.html

CHAPTER 2. BACKGROUND 19

On conceptual level the network node contains multiple virtual routers.
In most use cases each tenant has their own virtual router, which is connected
to shared public network (internet) and to one ore more tenant-specific inter-
nal networks. Using the virtual router tenants can utilise Network Address
Translation (NAT) to share one public IP address for multiple virtual ma-
chines or connect floating IP address to specific virtual machine. NAT allows
tenants to have internal IP address blocks for virtual machines and one (or
more) public address blocks for internet connection. All this preserves ex-
pensive public IP addresses.

Figure 2.3: Overview of network components running inside compute nodes
in Open vSwitch configuration.[29]

Figure 2.3 details the networking components running inside the compute
nodes. The Open vSwitch architecture uses both Open vSwitch switches
and Linux bridges to provide network connectivity to tenant networks and
to separate networks belonging to different tenants. Each compute node
has one bridge for each physical network interface, br-tun for gre tunneled
networks or br-vlan for vlan tunneled networks. Integration bridge br-int is
used for connecting virtual machines to tunneled networks. In addition there
is one Linux bridge for each virtual machine running on the compute node.
This additional bridge is needed for OpenStack security groups which are
implemented using iptables functionality in Linux kernel. Ultimately this is

CHAPTER 2. BACKGROUND 20

a workaround for the fact that iptables rules can not be directly attached
to Open vSwitch ports [1]. In total every IP packet leaving virtual machine
must travel through 9 virtual network devices before reaching the physical
network interface of the compute node (counting virtual ports and bridges
as devices).

Figure 2.4: Network traffic flow from virtual machine in OpenStack to inter-
net. [29]

Figure 2.4 gives overview of the components involved in delivering IP
packets from virtual machine to public internet. In this case packets travel
from virtual machine to compute node, which delivers them to network node.
Network node then sends the packets to internet. Basically all components in

CHAPTER 2. BACKGROUND 21

Neutron networking detailed before are involved when communicating with
hosts outside of the OpenStack cloud. The network node acts as a router
which is connected to internet and which then directs incoming traffic to
correct virtual machine.

In total each IP packet will travel through 27 virtual or physical network
devices before reaching the public internet. All this causes significant over-
head and adds delay to communication. In some cases the processing can
also limit the available throughput. The network performance of OpenStack
is further analyzed in section 5.1.

2.3.3 OpenStack Glance Image Service

Glance is the primary image service in OpenStack installation. It provides
virtual machine images for Nova. Essentially each image contains installed
operating system. When launching virtual machine Nova connects the new
instance to a user-specified image from Glance and provides configuration for
the operating system.

Glance can use multiple different backends for storing the images. In
the simplest case images are stored as files on the file system, either locally
or using network filesystems. Other popular choices for storing images are
OpenStack Swift object storage, Amazon Simple Storage Service (S3) and
Ceph11 distributed file system.

The high-level architecture of Glance is depicted in Figure 2.5. The most
important component is the rest API provided for clients. Using the API
clients such as Nova can retrieve images from Glance or store new images.
Glance handles authentication using OpenStack keystone and then provides
the image data for client. Client does not need to care about how the images
are stored inside Glance, so changing storage backend only influences Glance
itself, not clients. Also the database which Glance uses internally to store
information about images is invisible to clients.

2.4 Software Defined Networking and Net-

work Functions Virtualisation

Software Defined Networking (SDN) [26] is an emerging network architec-
ture which decouples network control and actual user data forwarding. The
network control is centralized and the underlying infrastructure is abstracted

11http://ceph.com/

http://ceph.com/

CHAPTER 2. BACKGROUND 22

Figure 2.5: OpenStack Glance architecture [28].

to achieve easier network management. On a conceptual level software de-
fined networking is divided to three layers, application layer, control layer
and infrastructure layer.

On the application layer reside normal applications which utilize the net-
work. Traditionally these applications have no control over the network they
are operating on. However, SDN offers northbound API for application layer
for modifying the logical network topology. Applications could for example
request specific Quality of Service (QoS) class from SDN controller, which
then would configure the network to fulfill the needs of all applications.

The OpenStack Neutron networking can be interpreted as software de-
fined networking platform. The Neutron service offers API for other Open-
Stack services to request virtual networks. When tenants request network
connections, Neutron networking delegates the responsibility of creating the
networks on underlying hardware to appropriate plugin. The plugin then
configures the networks so that tenants get the requested virtual network

CHAPTER 2. BACKGROUND 23

connections. The Neutron networking also isolates tenant’s network traffic
from other tenants even though all of them share a single physical network.

Network Functions Virtualisation (NFV) [14] relies on network functions
implemented as software components running on standard IT infrastructure.

European Telecommunications Standards Institute (ETSI) has identified
multiple use cases for NFV. Use case #5: Virtualisation of Mobile Core
Network and IMS as presented in [16] describes how NFV can be utilized to
build mobile core networks.

2.5 Long Term Evolution (LTE)

Long Term Evolution (LTE) is the newest mobile network standard by the
Third Generation Partnership Project (3GPP). It is designed to improve
mobile data rates and spectrum utilization while simplifying the network
architecture. All communications in LTE happen using packet-switched
IP protocol instead of multiple specialized and circuit-switched protocols
used in previous wireless networks. As the core network is completely IP
based, it is possible to build LTE-compliant networks using commercial of-
the-self (COTS) hardware and existing operating systems and network ap-
plications. [35, Chapter 4]

The architecture and different components of LTE network are specified
and standardized by ETSI 3rd Generation Partnership Project (3GPP) [2].
3GPP is a global initiative consisting of seven telecommunications standard
development organizations. Due to the global nature, the same network
technologies are deployed across the world. Furthermore, the openness of
the specification allows anyone to manufacture standard-compliant network
entities.

Figure 2.6: LTE network elements and interfaces overview [32].

CHAPTER 2. BACKGROUND 24

On a high level the LTE network can be divided to two parts, the Evolved
Universal Terrestrial Radio Access Network (E-UTRAN) and Evolved Packet
Core (EPC). The E-UTRAN is the wireless part of the LTE network and it
consist of User Equipments (UE), such as mobile phones, and Evolved Node
B (eNB) which are the base stations in LTE network. The EPC contains
all other network elements required to deliver data from eNodeB to public
internet. Among these elements are Mobility Management Entity (MME),
Serving Gateway (S-GW), Packet Data Network Gateway (PDN-GW), and
Home Subscriber Server (HSS). Figure 2.6 presents the overview of different
components in LTE network and the interfaces between the components.

The eNB is the most complex element of the LTE network as it has to
implement both the radio communications interfaces and EPC communica-
tion interfaces. For the radio communication eNB needs antennas and radio
module that modulates digital signals sent over radio interface. These are
physical devices than can not be implemented in software, thus the whole
eNB must be a physical device. In fact it is the only LTE network element
that must be a standalone physical device. In addition to transmitting data
between UE and EPC the eNB is responsible for scheduling air interface and
managing quality of service, partly handles the mobility of UEs and manages
interference between base stations. The eNB handles both signaling and user
data. Usually there are hundreds of eNodeBs in a single network.

Mobile management entity is the main signaling entity in LTE network. It
handles only signaling, never receiving or sending of any user data. When UE
joins the LTE network, MME is responsible for authenticating the user using
information from HSS. After authentication MME establishes bearers, which
are IP tunnels that connect UE to internet through S-GW and PDN-GWs.
MME also participates in the mobility management of UEs. If the UE moves
between tracking areas or eNodeBs are not connected to each other then
MME is needed for signaling. Also interworking with older phone networks
and SMS and voice support are handled by MME. There are multiple MMEs
in single network and each of them are responsible for part of the eNodeBs
in the network.

The Home Subscriber Server is a database that keeps records of the sub-
scribers of the operator. For each subscriber the HSS maps subscriber’s
International Mobile Subscriber Identity (IMSI) to other information of the
subscriber. IMSI is used fro tracking the subscriber in home and foreign net-
works and it uniquely indentifies the subscriber. The IMSI is stored on the
Subscriber Identity Module (SIM)-card of the user. Among the data that HSS
stores is the MME in which responsibility area the subscriber currently is,
the subscriber phone number and Access Point Names (APN) the subscriber
is allowed to use. Each operator has usually a single HSS.

CHAPTER 2. BACKGROUND 25

Serving Gateway is responsible for managing GTP tunnels between eNB
and PDN-GW. To allow mobility while keeping existing TCP connections
open all the user traffic in LTE network is transmitted in GPRS Tunnelling
Protocol (GTP) tunnels. As long as the end of the tunnel that is connected
to internet does not change, the UE can keep using the same IP address.
The other end of the tunnel is transferred from eNodeB to another anytime
the UE moves in the network. If the UE moves away from the area that
is served by previous MME, the S-GW responsible for the tunnel is usually
changed to a S-GW related to new MME. There are usually one S-GW for
each MME in the network.

PDN-GW is the gateway to internet from LTE network. It terminates
the GTP tunnel from eNodeB and transmits the user data to internet using
standard IP protocol. PDN-GW is also responsible for assigning IP addresses
for UEs and possibly doing Network Address Translation (NAT) if that tech-
nology is used by operator. In mobility scenarios the PDN-GW is the single
entity that won’t change during active session. This allows the UE to keep
the same IP address and keeps network connections alive while user roams in
the network. The amount of PDN-GWs in network depends on the amount
of traffic service provider wants to be able to support.

2.5.1 Distributed MME

In this thesis we use LTE core network as an example application domain
for our multi-cloud load balancing setup. Specifically we deploy distributed
MME on the developed platform. This chapter briefly introduces the dis-
tributed MME designed and implemented by Gopika Premsankar [32].

Traditionally the LTE core network elements are static and it’s not easy
to add or remove these elements in a running network. However, using cloud
techniques for scaling the network based on demand requires that we can add
or remove virtual entities automatically based on demand. Thus, distributed
architecture for MME is proposed. In this architecture the single logical
MME is divided in three logical parts. These parts are MME front-end,
MME worker node(s) and state database. The architecture of distributed
MME is presented in Figure 2.7.

First part is front-end that handles all the communications with other
LTE network components and MME worker nodes. It is designed to be just
a thin proxy that relays traffic from other LTE network entities to worker
nodes. Furthermore, it balances the traffic among worker nodes.

Second part is MME worker nodes that handle the computation required
for different procedures the MME is involved with. These are the most
computationally intensive part of the MME and the ideal subject for scaling.

CHAPTER 2. BACKGROUND 26

Figure 2.7: The architecture of distributed MME.

When there is only small amount of subscribers online, only few worker
nodes are required. When the network load increases, new worker nodes can
be added. As the worker nodes are not directly connected to other entities
in LTE network, rest of the network does not need to know about the adding
or removing MME workers. The worker nodes are stateless, thus removing a
worker node is easy as no data needs to be saved.

The third part is a state database which keeps track of the internal status
of the whole MME. This status includes information of connected clients,
ongoing LTE procedures, and which worker is currently handling which client.
All the information workers need to complete requests is stored in the state
database. In the proof of concept implementation the author uses Redis12

cluster as the state database. In this case the database itself is distributed
among multiple nodes but worker nodes see it as a single database.

In addition to supporting EPC protocols support for the load balancer
implemented in this Master’s thesis was implemented in the MME front-end.
Thus the MME front-end is able to request adding or deleting worker nodes
from our load balancer. As the front-end makes the decision when to add
or remove workers, the system has multiple metrics available for doing the
scaling decisions. In this implementation the number of attach requests per
second is used as a metric which triggers scaling.

2.6 Web Technologies

In current web services often provide Application Programming Interfaces
(API) for other developers to interact with the service. Regarding this thesis

12http://redis.io/

http://redis.io/

CHAPTER 2. BACKGROUND 27

the OpenStack API and our own load balancing API are in a central position.
This section explains the relevant technologies related to these APIs.

Both of these APIs are built around Representational State Transfer
(REST) [17] architecture using Hypertext Transfer Protocol (HTTP) [7]. In
REST architecture servers should hold no client state. Instead every request
coming from client should contain all the information required for complet-
ing the request. Conforming to REST architectural constraints makes the
interfaces generalized and applications easily scalable. As all requests con-
tain all the needed information subsequent requests from single client can be
handled by different servers. Thus scaling can be done horizontally, adding
multiple workers and distributing requests among workers.

Both of these APIs are built using Python programming language. It
is not economical to implement web server with Python, so both of these
APIs rely on Web Server Gateway Interface (WSGI) [15]. WSGI describes
an easy to implement method for communication between web servers and
web applications. Clients send HTTP requests to web server, which parses
the request data and calls Python application object which calculates the
result for given request and return the data back to web server. The web
server then delivers the data to the client.

The WSGI architecture separates socket handling from the actual appli-
cation logic. There are multiple high-performance web servers available, but
extending those to generate dynamic content is out of their scope. Instead
WSGI allows generating the content using external application. Further-
more, this approach allows implementing the web server and application
using different programming languages. Common choice is to implement the
web server with low-level, high performance language such as C and then use
higher-level languages such as Python or Ruby for application logic.

The WSGI application can return any static or dynamic data to the web
server. Generally it can be text as Hypertext Markup Language (HTML),
Cascading Style Sheet (CSS) or JavaScript documents, images, audio, video
or any other document format. In the case of web APIs most modern ap-
plications use Extensible Markup Language (XML) [10] or JavaScript Object
Notation (JSON) [9] as a data interchange format. Both the OpenStack API
and our load balancer use JSON by default.

The JSON format has become incredibly popular in web development
lately. Most people consider JSON as easier to read and write, for both
humans and computers. JSON specification does not specify schema unlike
XML, so developers save time as they don’t need to write schema files for
APIs. JSON is also the native data interchange format for JavaScript, so it
is logical choice for web applications.

CHAPTER 2. BACKGROUND 28

2.7 Related Work

Virtualisation of mobile core networks and inter-cloud federation are hot
topics among the industry at the moment. Thus, a lot of research has been
conducted on these topics. This section presents the most important related
research results.

2.7.1 Cloud federation and load balancing

The interoperability of multiple cloud services is often called cloud federation.
Multiple architectures have been proposed for connecting clouds from differ-
ent vendors. Kurze et al. [24] investigates both commercial cloud providers
and open-source cloud systems and possibilities for interoperability. Yang
et al. [42] proposes cloud federation architecture especially for real-time ap-
plications such as games. Their architecture has layer for enforcing business
SLA and lower layer for actual cloud control.

Celesti et al. [13] proposes usage of Cross-Cloud Federation Manager
(CCFM) for intelligently managing resources across multiple clouds. In their
solution users interact with so-called home cloud, which provides at least
part of the computation capabilities needed bu users. When the home cloud
runs out of capacity, it intelligently discovers other clouds that are capable
of providing needed services and automatically schedules parts of computa-
tion to other clouds. As the functionality is built into the home cloud, users
are not aware that part of their virtual machines are running on different
clouds. The CCFM component handles discovering other clouds, selecting
most prominent foreign cloud for needed resources and authenticating the
user to foreign cloud. However, the research does not assess the performance
of their solution or the network connections between these clouds.

In the paper by Villegas et al. [40] a layered architecture for cloud feder-
ation is presented. The idea is that federation can happen on SaaS, PaaS or
IaaS layer. The different layers are responsible for different

Automatic scaling is an essential component of multi-cloud load balancing
setup. Beernaert et al. [6] presents an elastic load balancer for OpenStack.
Their implementation monitors CPU load across VM instances connected to
given service. If the load is too high, the system starts new instance and
then notifies the service that new instance is available. When CPU load
decreases, the system will stop instances accordingly. To avoid oscillation
the load balancer requires that two consecutive load checks yield the same
action. While the solution is effective at preventing oscillation, it adds delay
to load balancing decisions.

CHAPTER 2. BACKGROUND 29

2.7.2 Virtualization performance

The performance of virtual machines in cloud is widely studied subject. Wang
and Ng [41] studies the impact of virtualization for network performance in
Amazon EC2 cloud. They show that especially with the smaller instances in
cloud the network performance varies significantly and quite randomly due to
shared physical resources. Both the throughput and latency between virtual
machines varies during their measurements. Therefore they conclude that us-
ing cloud for network measurements and research should be done carefully.
According to Ristov et al. [34] the cloud decreases the performance of appli-
cations to around 73% compared to similar hardware without virtualisation.
Ou et al. [31] studies the variations in cloud performance. They note that
the performance of instances with the same type can vary depending on the
physical hardware. Callegati et al. [12] analyze the network performance of
virtual machines in OpenStack Havana cloud. Their measurements indicate
that OpenStack negatively affects the network performance of applications.

2.7.3 Virtual Evolved Packet Core

The virtual telecommunication infrastructure has been studied from multiple
different viewpoints. Especially the MME has received wide attention. Bosch
et al. [8] present virtual telco as means for consolidating hardware. As an
example use case for their architecture, they present distributed MME. An
et al. [4] presents distributed MME architecture where all MME nodes are
identical, but are responsible for serving closest clients. When clients move
the state is transfered between MME nodes. Thus the architecture is not
hierarchical.

Raivio et al. [33] presents hybrid cloud setup for Short Message Service
Center (SMSC). Their solution uses proactive model for predicting service
load and launching new virtual machine instances before they are actually
needed. The developed prototype system uses OpenNebula as private cloud
and Amazon EC2 as public cloud. The paper also presents thorough cost es-
timation of the hybrid cloud setup and proposes how to optimize the capacity
of private cloud to gain maximal cost savings.

Chapter 3

System Design

This chapter details the design of our load balancer software for multiple
OpenStack installations. First we introduce the high-level architecture of
the system and the interactions between client applications, load balancer
and OpenStack clouds. Second, we present the internal architecture of our
load balancer.

3.1 High-level Architecture

On a high-level our load balancer acts basically as a proxy between client ap-
plication and multiple OpenStack installations. Instead of using OpenStack
API directly the client application sends RESTfull HTTP requests to load
balancer which then figures out to which OpenStack instance is most appro-
priate to complete the action. The requested action is then completed using
the OpenStack API. The application itself is responsible for forwarding the
actual user data to the new virtual machines. One possible implementation
is to use special front-end application to handle user data as presented in the
Figure 3.1. Another possibility would be to direct traffic directly from clients
to virtual machines without any central node. This kind of traffic routing
could be done for example by leveraging Domain Name System (DNS) load
balancing mechanism [11].

All the actions in the system are always initiated by the client. The
client API was designed to be minimal and as easy to use as possible to
make integration to client applications easy. The main operations available
to client are creation and deletion of instances. In addition the possibility to
list instances is provided. At this point the load balancer does not implement
any kind of encryption or authentication in communication with the client
application. Thus it’s not suitable for use in public networks.

30

CHAPTER 3. SYSTEM DESIGN 31

Figure 3.1: The high-level architecture of our load balancing system. The
load balancer only communicates with the OpenStack platform and the ap-
plication needing load balancing service, not with clients or virtual machines.

When client wants to create new instance, it sends HTTP POST request to
url /vm with json body indicating the type of VM to create. The possible
types are defined in load balancer configuration and specify all the attributes
of new VM instances. This makes integrating the load balancer to applica-
tions easy, as the application does not need to know the details of virtual
machines in the OpenStack clouds, only names of available types. However,
administrator must carefully configure the load balancer and provide the de-
tails of virtual machines to create. Administrator needs to specify flavor
of the virtual machine, disk image to use and connected networks for each
possible virtual machine type.

It is important to note that the actual application data newer goes through
the implemented load balancer. The load balancer only manages virtual ma-
chines and does not handle the load balancing on application level. This
was conscious decision to make the load balancer compatible with wide vari-
ety of applications. In some papers this same technique is referred as cloud
scheduling [25] or cloud federation[24].

Keeping the virtual machine scheduling separate from application data
allows using the load balancer for any application independent of used net-
work protocols and other application properties. Application implementers
must only implement a small amount of code to collaborate with the load
balancer. Especially keeping in mind the LTE use case implementing the
required protocols, such as SCTP on the load balancer would have been
significant amount of work and out of the scope of this thesis.

CHAPTER 3. SYSTEM DESIGN 32

3.2 Internal Architecture

The load balancer is implemented as a Python WSGI application running in-
side Gunicorn1 WSGI server. Everything runs inside a single Python process,
so complicated inter-process communication is not needed. The Gunicorn
server listens for incoming TCP connections, parses the HTTP requests and
then delegates the actual request handling to a WSGI application written
in Python. The Python application extensively uses Flask2 web framework
and Flask-restful3 plugin to handle the incoming requests and for formatting
responses.

The load balancer application has four main component as presented in
Figure 3.2. Each of these components is a separate python module that
provides classes and functions for other components in the system. The
OpenStack manager and VM scheduler components are built from scratch
by the author of this thesis. The Flask-restful API logic is implemented
by the author using components provided by the Flask-Restful framework.
OpenStack API is a collection of classes related to different OpenStack ser-
vices and it’s provided by OpenStack open-source project. The OpenStack
API components have not been modified for this project. Unlike typical web
applications, the load balancer does not need any database. All relevant
information is queried from OpenStack on-demand. Furthermore, the load
balancer is stateless, so it’s possible to connect multiple similar load bal-
ancers to same clouds. This could be used for example to have separate load
balancer with different configuration for each application.

In this implementation the scheduler component is severely limited. The
scheduler counts the virtual machines in the related project on all configured
OpenStack clouds and uses the counts as the only metric for load balancing
situation. The aim is to have the same amount of virtual machines on each
cloud. When launching new instances, the cloud with least amount of virtual
machines is chosen as the target for new VM. If all clouds have the same
amount of VMs, the first configured cloud is selected. Similarly when deleting
virtual machines the load balancer selects one machine from the cloud with
largest amount of machines for deletion. User application can override this
behavior by selecting specific virtual machine for deletion.

When the Gunicorn server is started, it loads the application initializa-
tion code. First the initialization code reads configuration file specified by
the user. Then it tries to contact the keystone services of each OpenStack

1http://gunicorn.org/
2http://flask.pocoo.org/
3https://flask-restful.readthedocs.org

http://gunicorn.org/
http://flask.pocoo.org/
https://flask-restful.readthedocs.org

CHAPTER 3. SYSTEM DESIGN 33

Gunicron WSGI server

Flask App

OpenStack
Python APIFlask-Restful API

OpenStack
manager

VM scheduler /
load balancer

Incoming HTTP
request

Figure 3.2: The internal architecture of the load balancer and interactions
between components.

instance specified in the configuration file. After connecting the OpenStack
instances Flask app object is created and flask-restful api object attached to
it. Then all available api url endpoint resources are attached to the api and
server starts listening for connections.

When server receives new HTTP connection from client, it parses the
HTTP headers and calls the Flask app object with the information from re-
quest. The Flask app determines which API endpoint was called and then
calls the related view function. The view function calls OpenStack man-
ager and load balancer components to accomplish the results required by
client. Finally the OpenStack manager uses OpenStack Python API calls
to complete the actions. After the selected OpenStack cloud completes the
action, the results are returned to OpenStack manager which then returns
information to the view function and thus to the client.

In real environments Gunicorn should not be exposed directly to public
network, but instead it is recommended to use reverse proxy such as Nginx4 or
HA Proxy5 in front of Gunicorn. The reverse proxy could for example handle
SSL encryption, caching and buffering and load balancing among multiple
Gunicorn instances. All these practices improve security and scalability, but
in this thesis those are not used to keep the setup as simple as possible.

In total the load balancer consists of 16 Python source files containing
about 1100 lines, including comments. This figure does not include the con-

4http://nginx.org/
5http://www.haproxy.org/

http://nginx.org/
http://www.haproxy.org/

CHAPTER 3. SYSTEM DESIGN 34

tents of used libraries. The code is mostly really simple and implementing
similar functionality should not be too difficult. The load balancer imple-
mentation uses synchronous functions for everything to avoid weird behavior
with threading. This makes it easy to understand what happens in the code.
However, this means that the load balancer can handle only one HTTP re-
quest at a time and that returning the results to client happens only after
OpenStack has completed the request. Thus the client application must be
prepared to wait for the answer over two seconds in most cases.

The whole implementation phase took about a month in total. However,
only couple of days were spent actually coding the load balancer. Most of the
time spent implementing the load balancer was consumed by understanding
the OpenStack API and the related interactions between OpenStack compo-
nents. Also designing the system and selecting tools and libraries to use took
substantial amount of time.

Chapter 4

Testbed Architecture

This chapter describes the architechture of our testbed. The testbed is an ex-
tension to the testbed described by Antti Tolonen in his master’s thesis [39].
It is a joint operation between Department of Computer Science and Engi-
neering (CSE) of School of Science and Department of Communications and
Networking (COMNET) of School of Electrical Engineering. CSE depart-
ment is responsible for main computation units while COMNET department
is responsible for the LTE side of the project. The OpenStack architecture
used in the testbed is based on the reference architecture described in Open-
Stack installation guide [30].

4.1 Physical Architecture

The physical architecture of the testbed is detailed in Figure 4.1. The system
consists of two OpenStack installations, both including four identical blades
connected to single 10 Gb ethernet switch. The blade switch is connected
to university network with 10 Gb link. The university network provides
10 Gb connection between CSE and COMNET departments. There are no
firewalls between the departments and VLAN trunking is supported end-to-
end. University network also provides internet connection and connection
to shared network storage which is used for storing virtual machine images.
Echo server is used as a ssh gateway for connecting to the testbed from
internet and for hosting the load balancing application. eNB is a commercial
LTE base station which creates the E-UTRAN radio network. However, the
eNb is not connected to antenna module, so the network range is limited.

The main part of the testbed is HP BladeSystem c7000 Enclosure G2
chassis which includes eight blade servers, redundant power supplies and a
HP FlexFabric 10Gb interconnect. The hardware configuration of each blade

35

CHAPTER 4. TESTBED ARCHITECTURE 36

OpenStack "Quebec"

Controller

Echo

Internet

Network Compute 1 Compute 2

OpenStack "Uniform"

Controller Network Compute 1 Compute 2

CSE switch 1

CSE switch 2

University
network

eNB

COMNET
switch

File server

Figure 4.1: The physical architecture of the testbed.

is detailed in Table 4.1. The FlexFabric networking module is divided to two
logical ethernet ports, each providing 5 Gb link capacity. Unfortunately in
subsection 5.1.2 we notice that this virtual network interface is the limiting
factor for vm-to-vm throughput in our testbed. First of the ports is used for
OpenStack internal networks and internet connection, the second is used for
VLANs connecting the virtual machines and eNB. For more details refer to
Section 4.3.

Model HP ProLiant BL460c Gen8
CPU 2 * Intel Xeon E5-2665

(2.4-3.1 GHz, 64-bit, 8 cores, Hyper-Threading)
RAM 128 GB DDR3-1600

Storage 2 * 150 GB 10K rpm hard disk drives in raid 0
Networking HP FlexFabric 10Gb 2-port 554FLB Adapter

Table 4.1: OpenStack blade hardware configuration

Echo is a HP ProLiant BL280c G6 blade server with Intel Xeon E5640
CPU (2.67GHz, 64-bit, 4 Cores, Hyper-Threading), 8 Gb of RAM and 1 Gb
ethernet card. It has only 1 Gb ethernet link to university network but as it

CHAPTER 4. TESTBED ARCHITECTURE 37

does not handle any user traffic it is deemed adequate.
The university network is managed by university IT department and acts

as a black box to us. It offers 10 Gb end-to-end connectivity between CSE
and COMNET departments. The links are shared with other traffic so in
theory there might be traffic spikes that affect measurements. However, in
practice we have not noticed any delays or bandwidth drops due to other
network traffic.

The file server is also managed by university IT department and it is
shared with other projects. It offers us 2 Tb of storage over Network File
System (NFS) version 4 protocol. Again, in theory there might be load spikes
due to other projects using same resources, but we have not observed any
spikes or drops on the file server performance.

The OpenStack installation guides recommend that there are four phys-
ically separated networks: One for control traffic, one for virtual networks
(tunnels), one for storage and one for external network (internet) [30]. How-
ever, our testbed has only one physical network available, which is shared to
service all four purposes simultaneously. In the security and reliability point
of view this is not an optimal setup, but for the testbed it is good enough
trade-of between usability and cost.

4.2 Software Architecture

All of the physical hosts on the system are running Ubuntu 14.04 operating
system with latest patches from the OS vendor. Both OpenStacks are run-
ning OpenStack Icehouse and the OpenStack services are distributed to the
physical hosts according to the following list. The architecture is based on
the reference architecture described in OpenStack installation guide [30].

• Controller node

– Keystone

– Horizon

– Nova API

– Nova cert

– Nova consoleauth

– Nova conductor

– Nova scheduler

– Nova novncproxy

CHAPTER 4. TESTBED ARCHITECTURE 38

– Neutron server

– Glance API

– RabbitMQ

– MySQL

• Network node

– Neutron DHCP agent

– Neutron metadata agent

– Neutron Open vSwitch agent

– Neutron L3 agent

• Compute nodes

– Nova compute

– Neutron Open vSwitch agent

As the name implies, controller node runs the control components of all
OpenStack services. In addition the controller also runs RabbitMQ message
broker and MySQL server which are needed by all OpenStack services. The
network node runs only Neutron services. Basically it acts as a router, firewall
and DHCP server for all the virtual networks in OpenStack. The compute
nodes are responsible for hosting the actual virtual machines.

The controller and compute nodes are connected to single NFS mount
and all Glance and Nova services are configured to store their data on this
file system. This way virtual machine images are accessible from any node
in the OpenStack installation and copying those between machines is not
needed in any situation. The physical disks in machines are only used for
storing the main operating system, caching and log files, not for any user
data.

Additionally, all physical hosts are running ssh servers to allow easy re-
mote management and ntp software to keep the clocks synchronized.

The echo server is used for running our custom OpenStack load balancing
software. The software could also run on virtual machine on either of the
OpenStack installations, but we decided to run it on a separate host to isolate
it from the OpenStack installations.

CHAPTER 4. TESTBED ARCHITECTURE 39

4.3 Network Architecture

Both of the OpenStack installations are configured to use both VLAN tun-
neled and GRE-tunneled virtual networks. By default all virtual netoworks
are configured to use GRE-tunneled networks, as these do not require any
special support from network hardware. Administrator can manually con-
figure virtual networks to use VLAN-tagged networks when needed. The
VLAN-tagged networks in both OpenStack installations are configured to
use the same VLAN tags. Essentially this means that virtual machines in
both OpenStack clouds are connected to same LANs and can communicate
together without any routing or firewalling in between. As the network setup
is quite complex, we have included the commands for configuring SIGMONA
project networks in the OpenStack as Appendix A.

There are 5 different virtual networks as shown in the Table 4.2 and in the
following list. The only difference in networks between different OpenStack
installations is that the ue_net is not configured to the Quebec OpenStack
instance and that the IP address allocation ranges differ to prevent colli-
sions. Our MME implementation does not support multiple SPGWs, so it
is provisioned manually to Uniform, thus the network for user equipments is
not needed on the other OpenStack instance. The functions of the virtual
networks are as follows:

• The ext-net is GRE-tunneled external network with public IP ad-
dresses. It is used for allocating IP addresses to virtual routers and
floating IPs to virtual machines when needed.

• The openstack network is VLAN-tagged virtual network that is used
for administrator access to virtual machines. It also provides VMs with
internet access through virtual router.

• The ltemgnt network is VLAN-tagged virtual network that is used for
LTE control plane traffic.

• The lteuser network is VLAN-tagged virtual network that is used for
LTE user plane traffic.

• The ue_net network is GRE-tunneled network that is used for allo-
cating IP addresses for LTE user devices. It also provides the internet
connection for user devices through virtual router.

The virtual networks also share the same IP subnet on both installations.
Only the DHCP allocation ranges are different to prevent IP address col-
lisions. The IP address allocation pools for the networks are described in
Table 4.2.

CHAPTER 4. TESTBED ARCHITECTURE 40

Network Subnet Uniform IP pool Quebec IP pool
ext-net 130.233.42.0/24 130.233.42.33-62 130.233.42.128-254

openstack 10.1.0.0/24 0.1.0.2-100 10.1.0.102-200
ltemgnt 10.2.0.0/24 10.2.0.3-50 10.2.0.52-100
lteuser 10.3.0.0/24 10.3.0.3-50 10.3.0.52-100
ue net 10.10.0.0/24 and

10.10.10.0/24
10.10.0.2-254 and
10.10.10.2-254

Not configured

Table 4.2: IP allocation in virtual networks

Only required traffic is allowed to pass to virtual machines. To limit the
allowed traffic we use OpenStack security groups, which essentially control
iptables1 firewalls in compute nodes. For each virtual machine we associate
two security groups: the default security group and a security group de-
termined by the usage of virtual machine. In total we have configured 5
different security groups with names that describe the usage. The default
security group allows SSH connections from anywhere and Internet Control
Message Protocol (ICMP) messages and it’s associated to every machine to
allow controlling the VM. For example a node that runs MME front-end soft-
ware will be associated with security groups default and mme_frontend. All
the security groups and the firewall rules belonging to given security group
are listed in Table 4.3.

Security group Protocol Remote IP prefix Destination Ports
default icmp
default tcp 10.1.0.0/24 22
mme frontend sctp 10.1.0.0/24 any
mme frontend udp 10.2.0.0/24 2123
mme worker sctp 10.1.0.0/24 any
mme worker udp 10.2.0.0/24 2123
redis tcp 10.1.0.0/24 7000 - 7002
redis tcp 10.1.0.0/24 17000 - 17002
spgw udp 10.2.0.0/24 2123
spgw udp 10.3.0.0/24 2152

Table 4.3: Security group rules for incoming traffic.

1http://netfilter.org/

http://netfilter.org/

Chapter 5

Evaluation

This chapter presents the different measurements conducted to analyze sys-
tem performance, observed measurement results and analysis based on the
results. For all the measurements using virtual machines we used Ubuntu
14.04 instance with two CPU cores, 2Gb of RAM and 10Gb hard-disk space.

5.1 OpenStack Testbed Network Performance

The network performance of virtual machines significantly affects the per-
formance of deployed virtual network functions. When using automatic load
balancing, the system should have information of the traffic characteristics
and requirements set by the application. Load balancer should then schedule
the new virtual machine to proper location to offer acceptable performance
for application. For example if application requires high throughput to some
other application, in optimal case these would be scheduled in same physical
host.

In this section we analyze the network performance of virtual machines
running on OpenStack using synthetic and repeatable test procedures in 5
different test cases. Furthermore, we try to identify the reasons why we get
these results. For each test case we measure machine-to-machine latency and
TCP throughput.

In the system there are 5 different cases for virtual machine location
with respect to each other. The test cases are ordered based on the number
of physical and virtual networking components involved in transferring the
packets. We expect that the throughput will be highest in the first test case
on lowest on the last test case. Similarly, we expect that latencies will be
higher with later tests. The test cases are as follows:

1. Physical machine to physical machine without virtualisation. This test

41

CHAPTER 5. EVALUATION 42

case is included to set the baseline and to measure how our environment
performs without the overhead added by virtualisation. In this test
case packets travel only through the Linux kernel in both hosts and
the physical network in between.

2. Virtual machines running on single OpenStack instance on same phys-
ical virtualisation host. In this test case the packets travel from virtual
machine through linux bridge to the second virtual machine. Specifi-
cally this is only part of the path depicted in Figure 2.3.

3. Virtual machines running on single OpenStack instance but different
virtualisation hosts, VLAN network. In this case network packets must
travel twice through the path depicted with blue and green colors in
Figure 2.3

4. Virtual machines running on different OpenStack instances, connected
through shared VLAN network. This implies that the virtual machines
are also on different virtualisation hosts. The network path packets
must travel is similar to previous test case.

5. Virtual machines running on different OpenStack installations as in
the fourth test case. OpenStack internal communication using VLAN
tunnels and external communication using Floating IP. In this test case
packets must travel through project network, vlan network and external
network as depicted in Figure 2.4 in both OpenStack clouds.

5.1.1 Network Latency

The network latency between virtual machines was measured using stan-
dard Linux ping application. The application sends 10 ICMP echo request
messages and measures time between sent messages and received echo re-
ply messages. The table 5.1 Presents the minimum, maximum and average
Round Trip Times (RTT) for all the different test cases.

In all five test cases the complexity of the system increases compared to
the previous test case. As can be seen from the table 5.1 this increasing
complexity leads to increased network latency. Furthermore, the variations
in round trip time increase with the added complexity.

The first test case shows that the average round trip time between the
physical host machines is about 0.2ms which is very good result and sets
the baseline of our underlying network hardware performance. In practice
improving this value is not possible without significant hardware investments
and specialized network stack.

CHAPTER 5. EVALUATION 43

RTT (ms)
Case min avg max

1. 0.126 0.208 0.291
2. 0.410 0.446 0.504
3. 0.693 0.754 0.819
4. 0.624 0.743 0.813
5. 1.051 1.239 1.401

Table 5.1: Network round trip time between virtual machines in different
test cases.

The second test case indicates that adding virtualisation layer at least
doubles the latencies, even when the packets don’t need to travel through
physical network. In this case only few virtual network components must be
travelled through so added latency is small.

In the third and fourth test case the latencies are nearly identical. Even
though the virtualisation hosts are part of different OpenStack clouds in the
later case, the network path used is identical because of the shared VLAN
network between OpenStacks. Each packet travels the path depicted in Fig-
ure 2.3 twice, once in both compute nodes.

In the fifth test case each packet must travel from compute node to net-
work node and then through second network node to second compute hosts.
In practice every packet has to travel twice through the path depicted in
Figure 2.4.

It is evident that the network stack OpenStack uses adds significant
amount of latency to each network packet. However, even in the most com-
plicated scenario the maximum round trip time of 1.4ms is small compared
to the latencies in public internet.

5.1.2 Network Throughput

For measuring the network throughput we used iperf1 in TCP mode and
test duration of 30s. The test for each test case was run five times to get
reliable measurements. Table 5.2 shows the minimun, average and maximum
measured throughput in each of the five test cases.

From the first test case we see that our hardware almost accomplishes
the theoretical throughput of 5Gbps provided by the virtual network inter-
faces in blade servers. The most likely reason for small difference between
measured and theoretical performance is the overhead caused by adding eth-

1https://iperf.fr/

https://iperf.fr/

CHAPTER 5. EVALUATION 44

Throughput (Gbits/sec)
Case min avg max

1. 4.97 4.97 4.97
2. 12.1 14.06 15.6
3. 4.86 4.88 4.90
4. 4.87 4.88 4.89
5. 2.44 2.52 2.61

Table 5.2: Network throughput between virtual machines in different test
cases.

ernet headers to each packet. By using ethernet jumbo frames we might have
achieved slightly better throughput.

In the second test case when the virtual machines are running on same
physical hardware the achieved throughput is significantly higher than in any
other test case. This clearly exposes the fact that the physical network is
the limiting factor for throughput. In this test case the limiting factor is the
throughput of Linux network stack. We also see that the throughput varies
between 12.1 and 15.6 MBps, which is quite significant. Any extra work that
the hardware or kernel must handle during the transmission can affect the
throughput significantly.

Again the third and fourth test case achieve nearly identical performance
for the same reason as with the latency measurements. However, regarding
throughput the virtualisation does not cause significant decrease.

In fifth test case the throughput drops to half compared to test cases 1,
3 and 4. There are multiple possible explanations for this, but most likely
the reason is that the network node in both OpenStack clouds must simul-
taneously receive and send the same data through same physical interface.
Other possible reason is the Network Address translation conducted by both
network nodes. The NATing is expensive operation as the IP headers in
every packet must be modified and a lookup table updated or queried to get
the correct destination addresses. Furthermore, involving four physical hosts
instead of two physical hosts adds significant amount of complexity to the
route packets must travel.

5.2 MME Load Balancing

To demonstrate that the prototype multi-cloud load balancer works with dis-
tributed MME we used eNB emulator to constantly send one attach request
per second to the MME. We then set the internal load balancing so that

CHAPTER 5. EVALUATION 45

MME would trigger load balancing after few requests. We captured all IP
packets on the MME front-end host and draw Figure 5.1 which shows the
timeline of communications. The components are deployed in a fashion which
corresponds with the components in Figure 3.1. In this case the eNB emula-
tor acts as a client, MME front-end is the single application in the center and
the MMW worker nodes are running on the virtual machines on top of the
OpenStack installations. The state database does not map directly to any
of the elements in the figure even though it’s running on virtual machines in
the same OpenStack installation.

Figure 5.1: IP packets/s between MME front-end and other nodes during au-
tomatic load balancing test. RED: worker #1, GREEN: worker #2, BLUE:
Load balancer, PINK: eNB emulator

From the figure we can see that in the beginning MME front-end sends all
the traffic to worker node #1. Approximately after 10 seconds the front-end
decides to make a load balancing request and contacts the load balancer. At
49 seconds the worker node #2 comes online and takes half of the load from
node #1. We can see that while the node #2 registers to front-end, couple of
more packets are exchanged than during normal operation. At approximately
80 seconds the front-end decides that second node is not needed and stops
sending traffic to it. However, it does not send command to shut down the
instance yet.

Interestingly there are some drops in the traffic between front-end and
eNB emulator. We expected that the traffic should be constant, but clearly
this is not the case. The fluctuations in the traffic are analyzed more thor-
oughly in section 5.3.

CHAPTER 5. EVALUATION 46

The experiment demonstrates that the load balancer is able to launch
new instance when required and that it can then connect to the system au-
tomatically. In this case the startup of new instance took approximately 39
seconds. The delay depends on the size of the VM and the load of virtu-
alisation platform. If the load balancing decision is done based on actual
load, this delay might be too long and the service might experience slowness
during this period. That’s why methods for predicting the load are needed
and decisions must be done using predicted values.

5.3 MME Performance on Multiple Clouds

To validate the performance of our multi-cloud setup for the network func-
tions virtualisation use case, we deployed the distributed MME described in
Subsection 2.5.1 on the testbed. The test cases are designed to measure the
performance of MME in all the different cases that could happen when using
the load balancer. The load balancer is not enabled during these tests, as
it does not allow manual control of the virtual machine location. On the
contrary, worker nodes are started manually the achieve desired location for
them.

Based on the results of the testbed performance measurements, we de-
cided to measure MME performance in three different cases. Each of the test
cases correspond roughly to the test cases 2-4 described in Section 5.1. The
three test cases coorespond with the test cases 2-4 from Section 6.1. Test case
1 is not relevant here, as it does not use cloud technologies or virtualization.
Similarly test case 5 was lef out as floating IPs are not meant for application
internal communication, thus they should not be used in our use case.

In all three test cases three Redis nodes are running on first OpenStack
and distributed to both available compute nodes. The test cases are as
follows:

1. MME front-end and worker running in single OpenStack in same com-
pute node.

2. MME front-end and worker running in single OpenStack but different
compute node.

3. MME front-end running on first OpenStack and worker running on
second OpenStack.

We used eNodeB emulator developer by Vicent Ferrer Guasch [19] to send
one LTE attach request per second for 100 seconds to the distributed MME.

CHAPTER 5. EVALUATION 47

We captured all the IP packets on the MME front-end host with tcpdump2

and then calculated the delay between receiving attach request packet and
sending the last packet indicating completion of the attach procedure. The
same test was conducted separately for each of the three test cases and the
results are presented in Figure 5.2. In each of the test cases we had 1-2
outliers in the range of 2000ms (2s) which is two orders of magnitude higher
than the typical results. These data points were completely omitted in the
following analysis.

Figure 5.2: The attach delay of clients in each of the test cases.

The attach delay has significant variation in each of the three test cases,
the difference between fastest and slowest attach procedure being about 10ms
in each of the test cases. In the first and second test case median attach delay

2http://www.tcpdump.org/

http://www.tcpdump.org/

CHAPTER 5. EVALUATION 48

is roughly 13ms and in the third test case 14ms. In 50% of attaches the attach
happens within 3ms of the median attach delay, which can be considered as
a good result. Furthermore, even the maximum measured attach delay of
23ms is 27ms below the limit of 50ms allowed by LTE specification [3].

Compared to the resutls achieved in [19] and [39], the attach proceudere
using distributed MME is slower. We achieved average attach delay of 13ms,
while the other two authors achieved MME attach delay of 5,3ms. The
incresed delay is probably mostly caused by the incresed amount of signaling
traffic between the front-end and worker nodes. If the other parts of vEPC are
fast enough, our solution can still achieve the required performance. However,
the measurements in [19, 39] indicate that the most time-consuming part of
the full attach procedure is caused be the radio network. Furthermore, we
only tested the system with only one simultaneous ongoing attach procedure
as we did not have full eNB emulator available for testing. The real load
with multiple ongoing procedures might affect the results significantly.

Chapter 6

Discussion

This chapter presents discussion of our testbed, the developed load balancer
and the aplicability of these technologies to LTE core network use case. Fur-
thermore, we anlyze future work that would be needed to widely implement
this kind of system.

6.1 Testbed Performance

The networking in the deployed testbed performed surprisingly well despite
of reasonably cheap hardware. With the 2.5Gbps VM-to-internet bandwidth
it would be able to relay traffic for approximately 20-25 mobile LTE de-
vices all transferring data at the 100Mbps peak rate required by the LTE-
specification [3]. Furthermore, improving the bandwidth should be reason-
ably cheap by adding multiple network adapters to each host in OpenStack.
Also the additional latency caused by OpenStack networking is low enough
to support wide variety of network functions virtualisation use cases. Only
applications requiring extremely low latencies of less than 5ms might be af-
fected by the extra latency.

The network performance of our testbed is a little unrealistic, as all the
hardware is deployed really close to each other. In real-world use there would
usually be a longer distance between different components and some other
load on the network as well. Especially the cloud-to-cloud bandwidth would
definitely be slower, as well as the latency would be higher.

Furthermore, we were able to use VLANs to connect the two cloud in-
stallations, which is not a realistic requirement. VLANs are usually available
only in networks that are controlled by single operator and implemented us-
ing ethernet technology. With hybrid clouds other networking technologies
are needed to provide similar connectivity. One possibility would be using

49

CHAPTER 6. DISCUSSION 50

site-to-site VPN connection. For example IPSec [22] tunneling would allow
secure and high-performance tunneling of arbitrary IP-based network traffic
between multiple clouds.

The only underperforming part in the testbed was the network storage
system. Launching new virtual machines took quite a long time, which was
caused by the low bandwidth of the storage system. Moreover, all disk op-
erations took significant amount of time, which might have added delays
especially in the distributed MME test case. The redis cluster used as a
state database needs to write to disk periodically, and due to slow disk per-
formance the writes might delay other operations. Some of these problems
might have been avoided if we used the local storage in compute nodes for
virtual machine disks. However, we only had 150Gb of storage available in
each host, which prevented us from storing virtual machine disk images to
local storage. Furthermore, using local storage for virtual machines would
decrease the performance of live migrations as data would be copied from
host to another. Similarly the resiliency of the system would suffer as a host
failure would destroy all VM instances residing on that host.

6.2 Multi-cloud Load Balancing

Our implementation for the multi-cloud load balancer is a simple prototype
which provided only the necessary operations for testing the system. Even
with the simple implementation we were able to test the automatic scaling
functionality built into the distributed MME. The load balancer was able to
launch and terminate instances on request from the most appropriate cloud.
However, more sophisticated algorithm for load balancing would be needed.

In real use this kind of application-independent load balancing and schedul-
ing is not feasible solutions. Every application has specific performance met-
rics that are optimal for determining the optimal location for new virtual
machines. Furthermore, determining which virtual machine should be shut
down when load decreases could be better optimized based on internal per-
formance metrics. In the current solution the load balancer does not handle
any application traffic. Thus separate load balancing system is required for
application data. In the MME use case the front-end performed the load
balancing function and distributed traffic among connected worker nodes.

There are at least two different possible scenarios for more optimal load
balancing with multiple clouds. First is to provide the load balancer as
highly controllable microservice. In this case the load balancer would still be
independent component that connects to target clouds and provides API for
the client application. However, the application should provide meaningful

CHAPTER 6. DISCUSSION 51

performance metrics and decision rules for the load balancer, so that the
balancer can do good enough load balancing decisions autonomically. The
load balancer should have some kind of plugin architecture which allows it
to be extended for the needs of specific use cases. Even some kind of support
for modules for relaying application traffic would be useful. For example
common protocols such as HTTP would benefit from this kind of setup.

The second option would be to provide the load balancer as a library
which would be integrated into the application itself. The library would
provide the functions for querying cloud status, launching new VM to specific
cloud and terminating specific cloud. Then the application should implement
the logic for determining the optimal location for new VM, deciding when
to launch or destroy a VM and which VM do destroy. After the decision the
application would call the functions provided by the library to do the required
tasks. The tight integration would allow the application to control the clouds
better. Furthermore, the traffic relaying and load balancing decisions would
be made by a single system. Only the core logic would be implemented by the
library, rest would be freely customized by application developer. However,
this solution requires more work from application developer.

6.3 Distributed MME on Multiple Clouds

The current implementation of distributed MME is mainly constrained by
the context retrieval latency [32]. As the whole connection state is stored
to the database and workers are stateless, every operation requires querying
the database. Effectively this requires that the latency between workers and
database must be small. Furthermore, the database load can increase query
times, so optimizing database performance is important as well.

In the current setup the delay caused by the connection between front-end
and the worker nodes was not as critical as the database connection. Cur-
rently the front-end only relays SCTP connections from eNB to the workers,
thus multiple round-trip times is needed for setting up the connection. If
the network delay increases, the connection setup phase might affect the de-
lay of LTE procedures significantly. Thus, using same connection between
front-end and workers for multiple sessions and minimizing the amount of
transferred data might improve performance in network-constrained setups.

In our testbed the connection between clouds performed extremely well,
so running the workers and database on different clouds performed nearly
as well as with everything running on single cloud. However, as mentioned
before the connection between clouds would be significantly slower in real
situations.

CHAPTER 6. DISCUSSION 52

6.4 Future Work

All the solutions studied in this thesis are just proof of concepts and signifi-
cant amount of work would be required to make these techniques work in real
networks. This section presents our ideas of most compelling future work.

Regarding the testbed we have identified two important items for future
research. First of all the clouds should be installed in different buildings
with slower network connecting them to imitate real-world performance more
closely. Furthermore, employing more widely supported networking protocols
to connect the clouds should be done. This change would as well improve
the test results to predict real-world performance more precisely.

The second interesting research direction for the testbed would be to use
Docker1 containers instead of virtual machines for running the network appli-
cations. Docker containers are a lightweight alternative for virtual machines.
Instead of virtualizing the whole operating system, Docker containers share
the same operating system kernel but the libraries and applications are differ-
ent for each container. As the abstraction layer with Docker is much thinner
than with virtualisation, the containers should start considerably faster than
with virtual machines. Furthermore, distributing Docker images is simpler
than distributing other types of applications. However, Docker containers are
not as independent as virtual machines and do not provide as much security.

Replacing virtual machines with Docker containers requires significant
amount of work. First of all, it is not certain that the LTE components
and their networking is supported inside Docker. Second, the support for
Docker in OpenStack might not be mature enough for our use case. Third,
the rapidly evolving platform might introduce unexpected challenges. But if
everything works, Docker might be the future of application virtualisation.

For the load balancer there are few issues that need more thorough re-
search. First research goal would be addressing the design concerns described
in Section 6.2 and determine the most optimal way of implementing the whole
load balancing system. The current design where the load balancer is just a
tiny wrapper around OpenStack APIs does not provide good enough experi-
ence for application developers.

Second, the conditions that trigger load balancing should be considered.
Virtual machine resource utilization such as CPU capacity, memory capacity,
network performance and disk performance are all figures that should be
monitored and taken into consideration in load balancing. Furthermore,
application specific metrics might be more useful than generic metrics. In
addition to reacting to changes in application load, building models of the

1http://docker.com/

http://docker.com/

CHAPTER 6. DISCUSSION 53

traffic patterns and scaling the service in advance might result in improved
user experience.

Third, the placement algorithm for new virtual machines should be stud-
ied. As evident from Section 5.1, the placement has huge impact on network
performance between virtual machines. Furthermore, the network perfor-
mance for end-users around the world is significantly affected by the physical
location of virtual machines. Also the computational performance of virtual
machines might be affected by the placement as the variation in performance
might be significant depending on the load of host machine and the used
hardware [31].

Chapter 7

Conclusions

In this thesis we have build a testbed consisting of two independent Open-
Stack clouds for testing network applications. We have implemented a simple
prototype load balancing API that is capable of communicating with multi-
ple OpenStack clouds and scheduling resources across these clouds. We have
tested the load balancer on the deployed platform and analyzed the network
performance of the platform. Finally, we tested the load balancer and our
testbed as a NFV platform by running a distributed MME on the testbed.

Our research indicates that OpenStack can be used as a NFV platform
as the networking overhead of the platform is not too large in most cases.
Furthermore, OpenStack network performance should scale decently if more
powerful hardware is used. The network performance in setups involving
multiple clouds is probably constrained by the network connection between
clouds instead of the network performance of OpenStack clouds.

Our load balancer implementation shows that it is possible to use Open-
Stack for building hybrid clouds and automatically balance the load between
these clouds. With modest amount of code we were able to implement system
that communicates with multiple OpenStack clouds and is easy to use for
application developers. However, the OpenStack Python API used for this
load balancer was difficult to use and barely documented, so real integrations
should use the OpenStack HTTP REST API instead. Moreover, integrating
the load balancer to application should be considered more thoroughly as
discussed before.

The tests done with distributed MME indicate that it indeed would be
possible to deploy similar MME on multiple clouds and meet the LTE specifi-
cation requirements. Both the throughput and latency requirements of LTE
core network can be met on OpenStack clouds at least in situations when
the cloud is not overloaded. However, significant amount of work is required
to optimize the performance of the distributed MME for real-world use.

54

Bibliography

[1] Open vSwitch quantum plugin documentation. http://openvswitch.

org/openstack/documentation/. [Online; Accessed 21.10.2015].

[2] ETSI 3rd Generation Partnership Project (3GPP). ETSI TS 123 002
V12.7.0: LTE; Network architecture. Techincal specification, European
Telecommunications Standards Institute ETSI, July 2015.

[3] 3rd Generation Partnership Project (3GPP). 3GPP TR 36.913 V12.0.0:
Requirements for further advancements for Evolved Universal Terrestrial
Radio Access (E-UTRA) (LTE-Advanced). Techincal specification, 3rd
Generation Partnership Project (3GPP), September 2014.

[4] Xueli An, Fabio Pianese, Indra Widjaja, and Utku Günay Acer.
Dmme: A distributed lte mobility management entity. Bell Lab. Tech.
J., 17(2):97–120, September 2012. ISSN 1089-7089. doi: 10.1002/bltj.
21547. URL http://dx.doi.org/10.1002/bltj.21547.

[5] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. A view of cloud computing.
Commun. ACM, 53(4):50–58, April 2010. ISSN 0001-0782. doi: 10.1145/
1721654.1721672. URL http://doi.acm.org/10.1145/1721654.1721672.

[6] Leander Beernaert, Miguel Matos, Ricardo Vilaça, and Rui Oliveira.
Automatic elasticity in openstack. In Proceedings of the Workshop on
Secure and Dependable Middleware for Cloud Monitoring and Man-
agement, SDMCMM ’12, pages 2:1–2:6, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1615-6. doi: 10.1145/2405186.2405188. URL
http://doi.acm.org/10.1145/2405186.2405188.

[7] Tim Berners-Lee, Roy Fielding, and H Frystyk. RFC 1945: Hypertext
Transfer Protocol— HTTP/1.0. RFC 1945, RFC Editor, May 1996.
URL http://www.rfc-editor.org/rfc/rfc1945.txt.

55

http://openvswitch.org/openstack/documentation/
http://openvswitch.org/openstack/documentation/
http://dx.doi.org/10.1002/bltj.21547
http://doi.acm.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/2405186.2405188
http://www.rfc-editor.org/rfc/rfc1945.txt

BIBLIOGRAPHY 56

[8] P. Bosch, A. Duminuco, F. Pianese, and T.L. Wood. Telco clouds and
virtual telco: Consolidation, convergence, and beyond. In Integrated
Network Management (IM), 2011 IFIP/IEEE International Symposium
on, pages 982–988, May 2011. doi: 10.1109/INM.2011.5990511.

[9] T. Bray. RFC 7159: The JavaScript Object Notation (JSON) Data
Interchange Format. RFC 7159, RFC Editor, March 2014. URL http:

//www.rfc-editor.org/rfc/rfc7159.txt.

[10] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and
François Yergeau. Extensible Markup Language (XML) 1.0. Recommen-
dation REC-xml-19980210, The World Wide Web Consortium (W3C),
February 1998. URL http://www.w3.org/TR/1998/REC-xml-19980210.

[11] T. Brisco. RFC 1794: DNS support for load balancing. RFC 1794, RFC
Editor, April 1995. URL https://tools.ietf.org/html/rfc1794.

[12] F. Callegati, W. Cerroni, C. Contoli, and G. Santandrea. Perfor-
mance of network virtualization in cloud computing infrastructures:
The openstack case. In Cloud Networking (CloudNet), 2014 IEEE
3rd International Conference on, pages 132–137, October 2014. doi:
10.1109/CloudNet.2014.6968981.

[13] A. Celesti, F. Tusa, M. Villari, and A. Puliafito. How to enhance cloud
architectures to enable cross-federation. In Cloud Computing (CLOUD),
2010 IEEE 3rd International Conference on, pages 337–345, July 2010.
doi: 10.1109/CLOUD.2010.46.

[14] Margaret Chiosi, Don Clarke, Peter Willis, Andy Reid, James Feger,
Michael Bugenhagen, Waqar Khan, Michael Fargano, Chunfeng Cui,
Hui Deng, Javier Benitez, Uwe Michel, Herbert Damker, Kenichi Ogaki,
Tetsuro Matsuzaki, Masaki Fukui, Katsuhiro Shimano, Dominique
Delisle, Quentin Loudier, Christos Kolias, Ivano Guardini, Elena De-
maria, Roberto Minerva, Antonio Manzalini, Diego López, Francisco
Javier Ramón Salguero, Frank Ruhl, and Prodip Sen. Network func-
tions virtualisation. White paper, European Telecommunications Stan-
dards Institute, ETSI, October 2012. URL https://portal.etsi.org/

NFV/NFV_White_Paper.pdf.

[15] Philip J. Eby. Python Web Server Gateway Interface, WSGI v1.0.1.
Python Enhancement Proposal, PEP 3333. https://www.python.org/

dev/peps/pep-3333/, September 2010. [Online; Accessed 21.05.2015].

http://www.rfc-editor.org/rfc/rfc7159.txt
http://www.rfc-editor.org/rfc/rfc7159.txt
http://www.w3.org/TR/1998/REC-xml-19980210
https://tools.ietf.org/html/rfc1794
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/

BIBLIOGRAPHY 57

[16] ETSI Industry Specification Group (ISG) Network Functions Virtuali-
sation (NFV). ETSI GS NFV 001 v1.1.1: Netowrk Functions Virtuali-
sation (NFV); Use Cases. Group spesification, European Telecommuni-
cations Standards Institute, ETSI, October 2013.

[17] Roy Thomas Fielding. Architectural styles and the design of network-
based software architectures. PhD thesis, University of California, Irvine,
2000.

[18] Daniel F Garcia, G Rodrigo, Joaquın Entrialgo, Javier Garcia, and
Manuel Garcia. Experimental evaluation of horizontal and vertical scal-
ability of cluster-based application servers for transactional workloads.
In 8th International Conference on Applied Informatics and Communi-
cations (AIC’08), pages 29–34, 2008.

[19] Vicent Ferrer Guasch. Lte network virtualization. Master’s thesis, Aalto
University School of Electrical Engineering, October 2013.

[20] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal. Nfv: state of the
art, challenges, and implementation in next generation mobile networks
(vepc). Network, IEEE, 28(6):18–26, Nov 2014. ISSN 0890-8044. doi:
10.1109/MNET.2014.6963800.

[21] Qingye Jiang. Open source IaaS community analysis, OpenStack vs
OpenNebula vs Eucalyptus vs CloudStack, April 2015. URL http://

www.qyjohn.net/?p=3801. [Online, Accessed 12.09.2015].

[22] S. Kent and K. Seo. RFC 4301: Security architecture for the internet
protocol. RFC 4301, RFC Editor, September 2005. URL https://

tools.ietf.org/html/rfc4301.

[23] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.
KVM: the Linux virtual machine monitor. In Proceedings of the Linux
Symposium, volume 1, pages 225–230, 2007.

[24] Tobias Kurze, Markus Klems, David Bermbach, Alexander Lenk, Stefan
Tai, and Marcel Kunze. Cloud federation. In Proceedings of the 2nd In-
ternational Conference on Cloud Computing, GRIDs, and Virtualization
(CLOUD COMPUTING 2011), 2011.

[25] Wubin Li, J. Tordsson, and E. Elmroth. Modeling for dynamic cloud
scheduling via migration of virtual machines. In Cloud Computing Tech-
nology and Science (CloudCom), 2011 IEEE Third International Con-
ference on, pages 163–171, 2011. doi: 10.1109/CloudCom.2011.31.

http://www.qyjohn.net/?p=3801
http://www.qyjohn.net/?p=3801
https://tools.ietf.org/html/rfc4301
https://tools.ietf.org/html/rfc4301

BIBLIOGRAPHY 58

[26] Open Networking Foundation. Software-defined networking: The new
norm for networks. White paper, Open Networking Foundation, 2012.

[27] OpenStack Foundation. OpenStack admin guide. Nova system architec-
ture. http://docs.openstack.org/admin-guide-cloud/compute_arch.

html, . [Online, Accessed 07.09.2015].

[28] OpenStack Foundation. OpenStack Glance basic architecture. http://

docs.openstack.org/developer/glance/architecture.html, . [Online,
Accessed 03.10.2015].

[29] OpenStack Foundation. OpenStack networking guide. scenario: Legacy
with Open vSwitch. http://docs.openstack.org/networking-guide/

scenario_legacy_ovs.html, . [Online, Accessed 07.09.2015].

[30] OpenStack Foundation. OpenStack installation guide for Ubuntu
14.04. http://docs.openstack.org/kilo/install-guide/install/apt/

content/, . [Online; Accessed: 17.05.2015].

[31] Zhonghong Ou, Hao Zhuang, Jukka K Nurminen, Antti Ylä-Jääski, and
Pan Hui. Exploiting hardware heterogeneity within the same instance
type of Amazon EC2. In 4th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud), 2012.

[32] Gopika Premsankar. Design and implementation of a distributed mo-
bility management entity (MME) on OpenStack. Master’s thesis, Aalto
University School of Science, August 2015.

[33] Yrjo Raivio, Oleksiy Mazhelis, Koushik Annapureddy, Ramasivakarthik
Mallavarapu, and Pasi Tyrväinen. Hybrid cloud architecture for short
message services. In The 2nd international conference on cloud comput-
ing and services science CLOSER 2012, pages 489–500, 2012.

[34] Sasko Ristov, Goran Velkoski, Marjan Gusev, and Kiril Kjiroski. Com-
pute and memory intensive web service performance in the cloud. In
Smile Markovski and Marjan Gusev, editors, ICT Innovations 2012,
volume 207 of Advances in Intelligent Systems and Computing, pages
215–224. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-37168-4.
doi: 10.1007/978-3-642-37169-1 21. URL http://dx.doi.org/10.1007/

978-3-642-37169-1_21.

[35] Martin Sauter. From GSM to LTE: An Introduction to Mobile Networks
and Mobile Broadband. John Wiley & Sons, Ltd, 2011.

http://docs.openstack.org/admin-guide-cloud/compute_arch.html
http://docs.openstack.org/admin-guide-cloud/compute_arch.html
http://docs.openstack.org/developer/glance/architecture.html
http://docs.openstack.org/developer/glance/architecture.html
http://docs.openstack.org/networking-guide/scenario_legacy_ovs.html
http://docs.openstack.org/networking-guide/scenario_legacy_ovs.html
http://docs.openstack.org/kilo/install-guide/install/apt/content/
http://docs.openstack.org/kilo/install-guide/install/apt/content/
http://dx.doi.org/10.1007/978-3-642-37169-1_21
http://dx.doi.org/10.1007/978-3-642-37169-1_21

BIBLIOGRAPHY 59

[36] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. Openstack:
toward an open-source solution for cloud computing. International Jour-
nal of Computer Applications, 55(3):38–42, 2012.

[37] B. Sotomayor, Ruben S. Montero, I.M. Llorente, and I. Foster. Vir-
tual infrastructure management in private and hybrid clouds. Internet
Computing, IEEE, 13(5):14–22, September 2009. ISSN 1089-7801. doi:
10.1109/MIC.2009.119.

[38] Microsoft TechNet. Virtual private networking: An overview. https:

//technet.microsoft.com/en-us/library/bb742566.aspx. [Online; Ac-
cessed 24.10.2015].

[39] Antti Tolonen. Dynamic virtualized network functions on an OpenStack
cloud. Master’s thesis, Aalto University School of Science, September
2014.

[40] David Villegas, Norman Bobroff, Ivan Rodero, Javier Delgado, Yanbin
Liu, Aditya Devarakonda, Liana Fong, S. Masoud Sadjadi, and Manish
Parashar. Cloud federation in a layered service model. Journal of Com-
puter and System Sciences, 78(5):1330 – 1344, 2012. ISSN 0022-0000.
doi: http://dx.doi.org/10.1016/j.jcss.2011.12.017. URL http://www.

sciencedirect.com/science/article/pii/S0022000011001620. {JCSS}
Special Issue: Cloud Computing 2011.

[41] Guohui Wang and T.S.E. Ng. The impact of virtualization on network
performance of Amazon EC2 data center. In INFOCOM, 2010 Pro-
ceedings IEEE, pages 1–9, March 2010. doi: 10.1109/INFCOM.2010.
5461931.

[42] Xiaoyu Yang, Bassem Nasser, Mike Surridge, and Stuart Middle-
ton. A business-oriented cloud federation model for real-time appli-
cations. Future Generation Computer Systems, 28(8):1158 – 1167,
2012. ISSN 0167-739X. doi: http://dx.doi.org/10.1016/j.future.2012.
02.005. URL http://www.sciencedirect.com/science/article/pii/

S0167739X12000386. Including Special sections SS: Trusting Software
Behavior and SS: Economics of Computing Services.

https://technet.microsoft.com/en-us/library/bb742566.aspx
https://technet.microsoft.com/en-us/library/bb742566.aspx
http://www.sciencedirect.com/science/article/pii/S0022000011001620
http://www.sciencedirect.com/science/article/pii/S0022000011001620
http://www.sciencedirect.com/science/article/pii/S0167739X12000386
http://www.sciencedirect.com/science/article/pii/S0167739X12000386

Appendix A

Commands for configuring SIG-
MONA project in OpenStack

Create tenant and user

This step must be done as admin!

keystone tenant-create --name sigmona \

--description "SIGMONA EPC virtualization project"

keystone user-create --name sigmona-bot --pass 2ylg3e4qJb4aJQ

keystone user-role-add --user sigmona-bot --tenant sigmona --role _member_

Create ssh keypair

ssh-keygen -C "SIGMONA" -f ~/.ssh/sigmona

nova keypair-add --pub-key ~/.ssh/sigmona sigmona

Configure networks

This step must be done as admin!
The networks must be configured as admin, because neutron only allows

administrators to use provider extensions required for setting specific VLAN.

neutron net-create openstack \

--tenant-id $(keystone tenant-get sigmona | awk ’/id/ { print $4}’) \

--provider:network_type vlan \

--provider:physical_network physnet2 \

--provider:segmentation_id 3284

60

APPENDIX A. COMMANDS FOR CONFIGURING SIGMONA PROJECT IN OPENSTACK61

neutron net-create ltemgnt \

--tenant-id $(keystone tenant-get sigmona | awk ’/id/ { print $4}’) \

--provider:network_type vlan \

--provider:physical_network physnet2 \

--provider:segmentation_id 3285

neutron net-create lteuser \

--tenant-id $(keystone tenant-get sigmona | awk ’/id/ { print $4}’) \

--provider:network_type vlan \

--provider:physical_network physnet2 \

--provider:segmentation_id 3286

Configure subnets and router

neutron subnet-create --name openstack_subnet \

--gateway 10.1.0.1 \

--allocation-pool start=10.1.0.2,end=10.1.0.100 \

openstack 10.1.0.0/24

neutron subnet-create --name ltemgnt_subnet \

--no-gateway \

--allocation-pool start=10.2.0.2,end=10.2.0.100 \

ltemgnt 10.2.0.0/24

neutron subnet-create --name lteuser_subnet \

--no-gateway \

--allocation-pool start=10.3.0.2,end=10.3.0.100 \

lteuser 10.3.0.0/24

neutron router-create sigmona_router

neutron router-gateway-set sigmona_router ext-net

neutron router-interface-add sigmona_router openstack_subnet

Configure security groups

When configuring security groups we must use ip prefixes instead of security
groups as the target for traffic because the security groups have different IDs
in both OpenStack instances.

APPENDIX A. COMMANDS FOR CONFIGURING SIGMONA PROJECT IN OPENSTACK62

Allow all incoming icmp traffic by default

neutron security-group-rule-create --protocol icmp --direction ingress \

default

allow incoming ssh from openstack net

neutron security-group-rule-create --protocol tcp --port-range-min 22 \

--port-range-max 22 --remote-ip-prefix 10.1.0.0/24 default

neutron security-group-create --description "SSH gateway" \

ssh_gw

neutron security-group-rule-create --protocol tcp --port-range-min 22 \

--port-range-max 22 ssh_gw

neutron security-group-create --description "MME_FE" \

mme_fe

neutron security-group-rule-create --protocol 132 \

--remote-ip-prefix 10.1.0.0/24 mme_fe

neutron security-group-rule-create --protocol udp --port-range-min 2123 \

--port-range-max 2123 --remote-ip-prefix 10.2.0.0/24 mme_fe

neutron security-group-rule-create --protocol tcp --port-range-min 22 \

--port-range-max 22 --remote-ip-prefix 10.1.0.0/24 mme_fe

neutron security-group-create \

--description "MME worker" mme_worker

neutron security-group-rule-create --protocol 132 \

--remote-ip-prefix 10.1.0.0/24 mme_worker

neutron security-group-rule-create --protocol udp --port-range-min 2123 \

--port-range-max 2123 --remote-ip-prefix 10.2.0.0/24 mme_worker

neutron security-group-rule-create --protocol tcp --port-range-min 22 \

--port-range-max 22 --remote-ip-prefix 10.1.0.0/24 mme_worker

neutron security-group-create \

--description "Redis servers" redis

neutron security-group-rule-create --protocol tcp --port-range-min 17000 \

--port-range-max 17002 --remote-ip-prefix 10.1.0.0/24 redis

neutron security-group-rule-create --protocol tcp --port-range-min 7000 \

--port-range-max 7002 --remote-ip-prefix 10.1.0.0/24 redis

neutron security-group-rule-create --protocol tcp --port-range-min 22 \

--port-range-max 22 --remote-ip-prefix 10.1.0.0/24 redis

neutron security-group-create \

--description "S-PGW" spgw

APPENDIX A. COMMANDS FOR CONFIGURING SIGMONA PROJECT IN OPENSTACK63

neutron security-group-rule-create --protocol udp --port-range-min 2123 \

--port-range-max 2123 --remote-ip-prefix 10.2.0.0/24 spgw

neutron security-group-rule-create --protocol udp --port-range-min 2152 \

--port-range-max 2152 --remote-ip-prefix 10.3.0.0/24 spgw

neutron security-group-rule-create --protocol tcp --port-range-min 22 \

--port-range-max 22 --remote-ip-prefix 10.1.0.0/24 spgw

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Research Goals
	1.3 Structure of the Thesis

	2 Background
	2.1 Cloud Computing and Virtualisation
	2.2 Load Balancing Among Multiple Clouds
	2.3 OpenStack
	2.3.1 OpenStack Nova Compute Service
	2.3.2 OpenStack Neutron Networking Service
	2.3.3 OpenStack Glance Image Service

	2.4 Software Defined Networking and Network Functions Virtualisation
	2.5 Long Term Evolution (LTE)
	2.5.1 Distributed MME

	2.6 Web Technologies
	2.7 Related Work
	2.7.1 Cloud federation and load balancing
	2.7.2 Virtualization performance
	2.7.3 Virtual Evolved Packet Core

	3 System Design
	3.1 High-level Architecture
	3.2 Internal Architecture

	4 Testbed Architecture
	4.1 Physical Architecture
	4.2 Software Architecture
	4.3 Network Architecture

	5 Evaluation
	5.1 OpenStack Testbed Network Performance
	5.1.1 Network Latency
	5.1.2 Network Throughput

	5.2 MME Load Balancing
	5.3 MME Performance on Multiple Clouds

	6 Discussion
	6.1 Testbed Performance
	6.2 Multi-cloud Load Balancing
	6.3 Distributed MME on Multiple Clouds
	6.4 Future Work

	7 Conclusions
	A Commands for configuring SIGMONA project in OpenStack

