
Software-defined networking

Kimmo Ahokas
Aalto University School of Science
kimmo.ahokas@aalto.fi

Abstract
Software-defined networking is a new network architecture
that has attracted a lot of attention lately. SDN promises to
make network devices simpler while giving network admin-
istrators better control over network and increasing network
performance. This paper briefly introduces SDN architec-
ture, related network architecture and some recent research
related to SDN.

KEYWORDS: software-defined networking, sdn, simula-
tion, experimental evaluation

1 Introduction
As the amount of devices connected to the Internet grows ev-
ery day and more and more data is transferred from device
to device scaling up traditional network architecture gets in-
creasingly difficult. Routing tables in standard routers get
too small for global routing, hardware gets too expensive
and configuration errors are more common than ever before.
It is inevitable that new solutions to these problems must be
adopted in the industry.

One of the most-hyped terms in networking technology
at the moment is software- defined networking (SDN). Soft-
ware defined networking aims to separate network control
from data-layer devices. The separation allows more fine-
grained control while making network devices simpler. This
paper introduces software-defined networking and some re-
lated research along with different research methodologies
applied to software defined networking.

The paper is organized as follows: Section 2 intro-
duces traditional network architecture, section 3 describes
software-defined networking in more detail, section 4 briefly
introduces other SDN-related research and different research
methodologies applied to SDN and finally section 5 presents
our conclusions.

2 Background
This section describes those parts of traditional network ar-
chitecture that are relevant to software-defined networking.
This includes network layers, switches, routers, firewalls and
basics of routing protocols.

Traditionally network elements are defined by using the
Open Systems Interconnection (OSI) model. This concep-
tual model has 7 layers, each of which can have multiple
different protocols. Each layer serves the layer above and
is served by the layer below. Ideally layers are independent

and interact with adjacent layers using well defined appli-
cation programming interfaces (API). Thus, it is possible to
replace any protocol in single layer with different protocol
that offers a similar service. A data unit from a higher layer
is encapsulated inside a unit of lower layer. Thus, device
working on certain layer only needs to check headers of that
layer, without altering upper layer data.[1, chapter 10]

Simple devices usually function only on the lowest layers
of OSI model, while more complicated devices handle higher
layers as well. End nodes, such as standard desktop comput-
ers usually work on all of the layers of OSI model. Tradition-
ally devices operating on higher layers are more complicated
than devices operating on lower layers.

The simplest active elements in current networks are layer
2 switches. As the name suggests, these devices are con-
cerned only with headers of layers 1 and 2. These devices
relay traffic between different ports based on the packets
data link layer destination address and possibly Virtual Local
Area Network (VLAN) id [1, chapter 2]. As a layer 2 device
switches work only inside one network an can not be used to
connect multiple networks. Switches are self- learning de-
vices, which means that forwarding tables are populated au-
tomatically, without administrator intervention. Due to sim-
plicity, switches must be installed in spanning tree topology
and multiple paths to same destination are not allowed.

Routers are more sophisticated devices, that forward traf-
fic between multiple networks. The forwarding decision is
based on information from routing tables stored in the router
memory. Routing tables are constructed partly manually by
administrators and partly automatically using complicated
routing protocols.[1, chapter 7]

Firewalls operate on multiple layers, but usually below
layer 5. These devices filter traffic according to multiple
rules, such as layer 3 destination and target addresses and
layer 4 protocol and port numbers. Firewalls can even in-
spect application layer data to decide whether traffic should
be allowed. Firewalls are mostly configured manually by ad-
ministrators to only allow traffic that is needed by end users
and network services offered to outside network.[1, chap-
ter 30]

The Internet is a collection of interconnected networks
that are not managed by single organization. Instead there
are multiple autonomous systems (AS) that manage a set of
networks [1, chapter 14]. AS can be for example some large
organization or Internet service provider (ISP). Since each
AS manages their networks independently, routing between
multiple autonomous systems changes frequently. Routers
use special distributed routing protocols, such as PGB and
RIP to calculate new routes when the links inside networks



Aalto University CSE-E4430 Methods and Tools for Network Systems Autumn 2014

Figure 1: Software-Defined Networking Architecture [7].

change. These systems are complicated and difficult to
configure, so routing mistakes are common in the current
Internet.[1, chapters 13-15]

3 Software defined networking

This section describes software-defined networking and its
advantages and disadvantages over traditional network archi-
tecture.

The term software-defined networking was first used in a
white paper by Open Networking Foundation [7]. It is a new
network architecture which decouples network control from
actual data forwarding. It centralizes the control of single
network and abstracts the underlying infrastructure. Figure 1
presents the conceptual architecture of software-defined net-
working. The figure highlights the separation of infrastruc-
ture, control and application layers.

At the bottom of SDN architecture is the infrastructure
layer which consists of SND-aware network devices, such as
SDN switches. Unlike conventional layer 2 switches, SDN
switch does not construct the forwarding table automatically,
but instead relies on a flow table that is constructed by con-
troller and installed to the switch using shared API. The flow
table is more complicated than traditional forwarding table
and packets can be classified to different flows based on in-
formation from OSI layers 2 to 4.

The most important new feature of software-defined net-
working is the centralized controller. This facilitates easier
network administration, as the configuration information is
gathered into single place, instead of distributing it to in-
dividual network equipment. Furthermore, having a cen-
tralized overview of the network makes building of routing
tables easier too, as distributed routing algorithms are not
needed inside the network. Instead the controller calculates
optimal routes across the whole network, constructs SDN
flow tables and installs them into each of the switches in the
network.

The application layer contains business applications that
utilize the underlying network. Traditionally, applications
can not affect the underlying network. However, software-
defined networking enables applications to request specific
network behavior from network controller. For example,
controller can route traffic belonging to certain application
differently than other traffic from same hosts.

Because the traffic in network can be classified into dif-
ferent flows based on information from layers 2,3 and 4,
the distinction between switch and router is not as clear in
software-defined networking. Instead, SDN switches with
suitable controller can handle most traffic inside the network
without stand-alone routers. It is even possible to partially
replace firewalls with SDN switches, as flow rules do not
necessarily require target, but traffic can be dropped at the
switch as well. Even though SDN switches make switch-
ing decisions based on headers from multiple layers of OSI
model, it does not necessarily make devices as complicated
as traditional network devices working on same layer. This is
due the fact that SDN switches only do bit mask matching on
headers while the configuration is provided by the controller,
not by the internal software.

One of the most used protocols in SDN is OpenFlow [5],
promoted by Open Networking Foundation [7]. It is open
standard and not tied to single controller or switch ven-
dor. Thus it supports usage in heterogeneous networks.
OpenFlow is the protocol used between controller and SDN
switches to set up flow tables and to inform the controller of
events in the network. These events include but are not lim-
ited to link state changes, host joins and switch installations.

The first OpenFlow compatible SDN controller software
was NOX [4]. NOX is implemented as a C++ platform,
which offers applications view to the network and API for
controlling the network. NOX then allows developers to
write NOX applications using C++ or Python for controlling
the network. One of the newer SDN controllers is OpenDay-
light [6], which aims to be more flexible and easier to extend
than NOX.

Although the term software-defined networking is quite
new, similar ideas have been proposed long before. For ex-
ample Feamster et al. described architecture for separating
routing algorithms from actual routers [3] in 2004, 8 years
before the SDN white paper.

Like any new technology, Software defined networking
has some shortcomings. Curtis et al. [2] note that in large-
scale networks where flows change often the cost of involv-
ing controller in the setup process of every new flow can
grow intolerable. In the OpenFlow protocol switch must
send packets that do not belong to any current flow to the
controller, which then generates and installs new rules to the
flow tables of involved switches. This can cause significant
amount of delay in connection set-up stage, which may be
intolerable depending on the application requirements.

According to Tootoonchian and Ganjali [8] current Open-
Flow deployments rely on single controller, which has cer-
tain drawbacks. First of all, the single controller is a single
point of failure, as flow tables in switches can not be updated
if the controller fails. Furthermore, the centralized controller
might not scale in deployments involving large amounts of
events and multiple SDN switches.



Aalto University CSE-E4430 Methods and Tools for Network Systems Autumn 2014

4 Related work

This section describes recent software-defined networking
related research and different research methods used for
studying SDN.

Curtis et al. [2] present DevoFlow as an extension to
OpenFlow protocol. DevoFlow is intended for reducing de-
lay of flow set-up and thus reducing the load on SDN control
plane. DevoFlow is designed to excessively use OpenFlow
wildcard rules and rule cloning to allow the switch to create
flow rules independently in simple cases, without involving
the controller in the process. The design sifts part of the de-
cision making and statics collection back to the data plane
from the control plane.

Authors used computer simulation to analyze performance
of DevoFlow and OpenFlow. They developed "a flow-level
data center network simulator" and used traffic traces from a
cluster of 1500 computers as simulated network load. Their
results indicate that DeveFlow could decrease control plane
traffic significantly, thus decreasing flow setup latencies and
controller load.

Tootoonchian and Ganjali [8] present software called Hy-
perFlow as a solution for distributing logical centralized con-
troller to multiple physical controllers. They implement Hy-
perFlow as an application for OpenFlow controller NOX [4].
HyperFlow allows synchronizing the network information
among multiple NOX controllers. Thus, every controller still
has view over the whole network. Each controller node con-
trols the closest SDN switches, and in case of controller fail-
ure switches must be reconfigured to connect to other con-
trollers in the same network.

HyperFlow is implemented as a real C++ application and
evaluated using a testbed of 10 servers. As the used testbed
is not large enough to saturate even single NOX controller,
authors then proceed to artificially generate network events
to measure HyperFlow performance. The experimental eval-
uation indicates that at this point the HyperFlow slows down
NOX, but the failure tolerance may justify the performance
loss.

Both simulation and experimental evaluation have proven
to be suitable methods for evaluating different software-
defined networking solutions. As the SDN architecture in-
cludes both software and physical hardware, simulation is es-
sential method at the beginning of development cycle. Sim-
ulation allows researchers to identify problems in design be-
fore using resources and time to build actual physical design.
Simulation also has the advantage of simulating large net-
works without significant resources. However, simulations
always incorporate assumptions about the network and may
contain errors that corrupt end results.

Experimental evaluation can give more accurate results, as
the actual system is tested in real-world conditions instead
of model of the system. Moreover, the software built for
experimental evaluation is useful after tests, unlike simula-
tion models. However, experimental evaluation is not prac-
tical when developing new hardware. Furthermore, it might
be difficult to test the scalability and operation in large-scale
deployments with experimental evaluation, as it requires sig-
nificant amount of hardware and other resources.

5 Conclusions
Even though software-defined networking is a new concept,
it has gained massive amounts of attention in a short time
span. Many top-level network device manufacturers are in-
cluding SDN features into their products and it seems ex-
tremely likely that software-defined networking approach
will be adopted widely in the industry. However, there are
still many open problems related to SDN. For example con-
troller redundancy, failure behavior and interoperability be-
tween devices from multiple vendors need to be addressed
before widespread adoption in the Internet.

References
[1] D. E. Comer. Internetworking with TCP/IP: Principles,

protocols and architecture, volume 1. Pearson Prentice
Hall, Upper Saddle River, NJ, fifth edition, 2005.

[2] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagan-
dula, P. Sharma, and S. Banerjee. Devoflow: Scaling
flow management for high-performance networks. In
Proceedings of the ACM SIGCOMM 2011 Conference,
SIGCOMM ’11, pages 254–265, New York, NY, USA,
2011. ACM.

[3] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh,
and J. van der Merwe. The case for separating routing
from routers. In Proceedings of the ACM SIGCOMM
Workshop on Future Directions in Network Architecture,
FDNA ’04, pages 5–12, New York, NY, USA, 2004.
ACM.

[4] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. Nox: Towards an operat-
ing system for networks. SIGCOMM Comput. Commun.
Rev., 38(3):105–110, July 2008.

[5] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. Openflow: Enabling innovation in
campus networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, Mar. 2008.

[6] J. Medved, A. Tkacik, R. Varga, and K. Gray. Openday-
light: Towards a model-driven sdn controller architec-
ture. In A World of Wireless, Mobile and Multimedia
Networks (WoWMoM), 2014 IEEE 15th International
Symposium on, pages 1–6, June 2014.

[7] Open Networking Foundation. Software-defined net-
working: The new norm for networks. ONF White Pa-
per, 2012.

[8] A. Tootoonchian and Y. Ganjali. Hyperflow: A dis-
tributed control plane for openflow. In Proceedings of
the 2010 internet network management conference on
Research on enterprise networking, pages 3–3. USENIX
Association, 2010.


	Introduction
	Background
	Software defined networking
	Related work
	Conclusions

